(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
active(eq(0, 0)) → mark(true)
active(eq(s(X), s(Y))) → mark(eq(X, Y))
active(eq(X, Y)) → mark(false)
active(inf(X)) → mark(cons(X, inf(s(X))))
active(take(0, X)) → mark(nil)
active(take(s(X), cons(Y, L))) → mark(cons(Y, take(X, L)))
active(length(nil)) → mark(0)
active(length(cons(X, L))) → mark(s(length(L)))
active(inf(X)) → inf(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(length(X)) → length(active(X))
inf(mark(X)) → mark(inf(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
length(mark(X)) → mark(length(X))
proper(eq(X1, X2)) → eq(proper(X1), proper(X2))
proper(0) → ok(0)
proper(true) → ok(true)
proper(s(X)) → s(proper(X))
proper(false) → ok(false)
proper(inf(X)) → inf(proper(X))
proper(cons(any(X1), X2)) → cons(any(any(proper(X1))), any(proper(X2)))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(length(X)) → length(proper(X))
eq(ok(X1), ok(X2)) → ok(eq(X1, X2))
s(ok(X)) → ok(s(X))
inf(ok(X)) → ok(inf(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
any(X) → s(X)
any(proper(X)) → any(any(any(X)))
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(eq(0, 0)) → mark(true)
active(eq(s(z0), s(z1))) → mark(eq(z0, z1))
active(eq(z0, z1)) → mark(false)
active(inf(z0)) → mark(cons(z0, inf(s(z0))))
active(take(0, z0)) → mark(nil)
active(take(s(z0), cons(z1, z2))) → mark(cons(z1, take(z0, z2)))
active(length(nil)) → mark(0)
active(length(cons(z0, z1))) → mark(s(length(z1)))
active(inf(z0)) → inf(active(z0))
active(take(z0, z1)) → take(active(z0), z1)
active(take(z0, z1)) → take(z0, active(z1))
active(length(z0)) → length(active(z0))
inf(mark(z0)) → mark(inf(z0))
inf(ok(z0)) → ok(inf(z0))
take(mark(z0), z1) → mark(take(z0, z1))
take(z0, mark(z1)) → mark(take(z0, z1))
take(ok(z0), ok(z1)) → ok(take(z0, z1))
length(mark(z0)) → mark(length(z0))
length(ok(z0)) → ok(length(z0))
proper(eq(z0, z1)) → eq(proper(z0), proper(z1))
proper(0) → ok(0)
proper(true) → ok(true)
proper(s(z0)) → s(proper(z0))
proper(false) → ok(false)
proper(inf(z0)) → inf(proper(z0))
proper(cons(any(z0), z1)) → cons(any(any(proper(z0))), any(proper(z1)))
proper(take(z0, z1)) → take(proper(z0), proper(z1))
proper(nil) → ok(nil)
proper(length(z0)) → length(proper(z0))
eq(ok(z0), ok(z1)) → ok(eq(z0, z1))
s(ok(z0)) → ok(s(z0))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
any(z0) → s(z0)
any(proper(z0)) → any(any(any(z0)))
Tuples:
ACTIVE(eq(s(z0), s(z1))) → c1(EQ(z0, z1))
ACTIVE(inf(z0)) → c3(CONS(z0, inf(s(z0))), INF(s(z0)), S(z0))
ACTIVE(take(s(z0), cons(z1, z2))) → c5(CONS(z1, take(z0, z2)), TAKE(z0, z2))
ACTIVE(length(cons(z0, z1))) → c7(S(length(z1)), LENGTH(z1))
ACTIVE(inf(z0)) → c8(INF(active(z0)), ACTIVE(z0))
ACTIVE(take(z0, z1)) → c9(TAKE(active(z0), z1), ACTIVE(z0))
ACTIVE(take(z0, z1)) → c10(TAKE(z0, active(z1)), ACTIVE(z1))
ACTIVE(length(z0)) → c11(LENGTH(active(z0)), ACTIVE(z0))
INF(mark(z0)) → c12(INF(z0))
INF(ok(z0)) → c13(INF(z0))
TAKE(mark(z0), z1) → c14(TAKE(z0, z1))
TAKE(z0, mark(z1)) → c15(TAKE(z0, z1))
TAKE(ok(z0), ok(z1)) → c16(TAKE(z0, z1))
LENGTH(mark(z0)) → c17(LENGTH(z0))
LENGTH(ok(z0)) → c18(LENGTH(z0))
PROPER(eq(z0, z1)) → c19(EQ(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c22(S(proper(z0)), PROPER(z0))
PROPER(inf(z0)) → c24(INF(proper(z0)), PROPER(z0))
PROPER(cons(any(z0), z1)) → c25(CONS(any(any(proper(z0))), any(proper(z1))), ANY(any(proper(z0))), ANY(proper(z0)), PROPER(z0), ANY(proper(z1)), PROPER(z1))
PROPER(take(z0, z1)) → c26(TAKE(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(length(z0)) → c28(LENGTH(proper(z0)), PROPER(z0))
EQ(ok(z0), ok(z1)) → c29(EQ(z0, z1))
S(ok(z0)) → c30(S(z0))
CONS(ok(z0), ok(z1)) → c31(CONS(z0, z1))
TOP(mark(z0)) → c32(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c33(TOP(active(z0)), ACTIVE(z0))
ANY(z0) → c34(S(z0))
ANY(proper(z0)) → c35(ANY(any(any(z0))), ANY(any(z0)), ANY(z0))
S tuples:
ACTIVE(eq(s(z0), s(z1))) → c1(EQ(z0, z1))
ACTIVE(inf(z0)) → c3(CONS(z0, inf(s(z0))), INF(s(z0)), S(z0))
ACTIVE(take(s(z0), cons(z1, z2))) → c5(CONS(z1, take(z0, z2)), TAKE(z0, z2))
ACTIVE(length(cons(z0, z1))) → c7(S(length(z1)), LENGTH(z1))
ACTIVE(inf(z0)) → c8(INF(active(z0)), ACTIVE(z0))
ACTIVE(take(z0, z1)) → c9(TAKE(active(z0), z1), ACTIVE(z0))
ACTIVE(take(z0, z1)) → c10(TAKE(z0, active(z1)), ACTIVE(z1))
ACTIVE(length(z0)) → c11(LENGTH(active(z0)), ACTIVE(z0))
INF(mark(z0)) → c12(INF(z0))
INF(ok(z0)) → c13(INF(z0))
TAKE(mark(z0), z1) → c14(TAKE(z0, z1))
TAKE(z0, mark(z1)) → c15(TAKE(z0, z1))
TAKE(ok(z0), ok(z1)) → c16(TAKE(z0, z1))
LENGTH(mark(z0)) → c17(LENGTH(z0))
LENGTH(ok(z0)) → c18(LENGTH(z0))
PROPER(eq(z0, z1)) → c19(EQ(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c22(S(proper(z0)), PROPER(z0))
PROPER(inf(z0)) → c24(INF(proper(z0)), PROPER(z0))
PROPER(cons(any(z0), z1)) → c25(CONS(any(any(proper(z0))), any(proper(z1))), ANY(any(proper(z0))), ANY(proper(z0)), PROPER(z0), ANY(proper(z1)), PROPER(z1))
PROPER(take(z0, z1)) → c26(TAKE(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(length(z0)) → c28(LENGTH(proper(z0)), PROPER(z0))
EQ(ok(z0), ok(z1)) → c29(EQ(z0, z1))
S(ok(z0)) → c30(S(z0))
CONS(ok(z0), ok(z1)) → c31(CONS(z0, z1))
TOP(mark(z0)) → c32(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c33(TOP(active(z0)), ACTIVE(z0))
ANY(z0) → c34(S(z0))
ANY(proper(z0)) → c35(ANY(any(any(z0))), ANY(any(z0)), ANY(z0))
K tuples:none
Defined Rule Symbols:
active, inf, take, length, proper, eq, s, cons, top, any
Defined Pair Symbols:
ACTIVE, INF, TAKE, LENGTH, PROPER, EQ, S, CONS, TOP, ANY
Compound Symbols:
c1, c3, c5, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19, c22, c24, c25, c26, c28, c29, c30, c31, c32, c33, c34, c35
(3) CdtUnreachableProof (EQUIVALENT transformation)
The following tuples could be removed as they are not reachable from basic start terms:
PROPER(cons(any(z0), z1)) → c25(CONS(any(any(proper(z0))), any(proper(z1))), ANY(any(proper(z0))), ANY(proper(z0)), PROPER(z0), ANY(proper(z1)), PROPER(z1))
ANY(proper(z0)) → c35(ANY(any(any(z0))), ANY(any(z0)), ANY(z0))
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(eq(0, 0)) → mark(true)
active(eq(s(z0), s(z1))) → mark(eq(z0, z1))
active(eq(z0, z1)) → mark(false)
active(inf(z0)) → mark(cons(z0, inf(s(z0))))
active(take(0, z0)) → mark(nil)
active(take(s(z0), cons(z1, z2))) → mark(cons(z1, take(z0, z2)))
active(length(nil)) → mark(0)
active(length(cons(z0, z1))) → mark(s(length(z1)))
active(inf(z0)) → inf(active(z0))
active(take(z0, z1)) → take(active(z0), z1)
active(take(z0, z1)) → take(z0, active(z1))
active(length(z0)) → length(active(z0))
inf(mark(z0)) → mark(inf(z0))
inf(ok(z0)) → ok(inf(z0))
take(mark(z0), z1) → mark(take(z0, z1))
take(z0, mark(z1)) → mark(take(z0, z1))
take(ok(z0), ok(z1)) → ok(take(z0, z1))
length(mark(z0)) → mark(length(z0))
length(ok(z0)) → ok(length(z0))
proper(eq(z0, z1)) → eq(proper(z0), proper(z1))
proper(0) → ok(0)
proper(true) → ok(true)
proper(s(z0)) → s(proper(z0))
proper(false) → ok(false)
proper(inf(z0)) → inf(proper(z0))
proper(cons(any(z0), z1)) → cons(any(any(proper(z0))), any(proper(z1)))
proper(take(z0, z1)) → take(proper(z0), proper(z1))
proper(nil) → ok(nil)
proper(length(z0)) → length(proper(z0))
eq(ok(z0), ok(z1)) → ok(eq(z0, z1))
s(ok(z0)) → ok(s(z0))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
any(z0) → s(z0)
any(proper(z0)) → any(any(any(z0)))
Tuples:
INF(mark(z0)) → c12(INF(z0))
INF(ok(z0)) → c13(INF(z0))
TAKE(mark(z0), z1) → c14(TAKE(z0, z1))
TAKE(z0, mark(z1)) → c15(TAKE(z0, z1))
TAKE(ok(z0), ok(z1)) → c16(TAKE(z0, z1))
LENGTH(mark(z0)) → c17(LENGTH(z0))
LENGTH(ok(z0)) → c18(LENGTH(z0))
EQ(ok(z0), ok(z1)) → c29(EQ(z0, z1))
S(ok(z0)) → c30(S(z0))
CONS(ok(z0), ok(z1)) → c31(CONS(z0, z1))
TOP(mark(z0)) → c32(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c33(TOP(active(z0)), ACTIVE(z0))
ANY(z0) → c34(S(z0))
ACTIVE(eq(s(z0), s(z1))) → c1(EQ(z0, z1))
ACTIVE(inf(z0)) → c3(CONS(z0, inf(s(z0))), INF(s(z0)), S(z0))
ACTIVE(take(s(z0), cons(z1, z2))) → c5(CONS(z1, take(z0, z2)), TAKE(z0, z2))
ACTIVE(length(cons(z0, z1))) → c7(S(length(z1)), LENGTH(z1))
ACTIVE(inf(z0)) → c8(INF(active(z0)), ACTIVE(z0))
ACTIVE(take(z0, z1)) → c9(TAKE(active(z0), z1), ACTIVE(z0))
ACTIVE(take(z0, z1)) → c10(TAKE(z0, active(z1)), ACTIVE(z1))
ACTIVE(length(z0)) → c11(LENGTH(active(z0)), ACTIVE(z0))
PROPER(eq(z0, z1)) → c19(EQ(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c22(S(proper(z0)), PROPER(z0))
PROPER(inf(z0)) → c24(INF(proper(z0)), PROPER(z0))
PROPER(take(z0, z1)) → c26(TAKE(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(length(z0)) → c28(LENGTH(proper(z0)), PROPER(z0))
S tuples:
ACTIVE(eq(s(z0), s(z1))) → c1(EQ(z0, z1))
ACTIVE(inf(z0)) → c3(CONS(z0, inf(s(z0))), INF(s(z0)), S(z0))
ACTIVE(take(s(z0), cons(z1, z2))) → c5(CONS(z1, take(z0, z2)), TAKE(z0, z2))
ACTIVE(length(cons(z0, z1))) → c7(S(length(z1)), LENGTH(z1))
ACTIVE(inf(z0)) → c8(INF(active(z0)), ACTIVE(z0))
ACTIVE(take(z0, z1)) → c9(TAKE(active(z0), z1), ACTIVE(z0))
ACTIVE(take(z0, z1)) → c10(TAKE(z0, active(z1)), ACTIVE(z1))
ACTIVE(length(z0)) → c11(LENGTH(active(z0)), ACTIVE(z0))
INF(mark(z0)) → c12(INF(z0))
INF(ok(z0)) → c13(INF(z0))
TAKE(mark(z0), z1) → c14(TAKE(z0, z1))
TAKE(z0, mark(z1)) → c15(TAKE(z0, z1))
TAKE(ok(z0), ok(z1)) → c16(TAKE(z0, z1))
LENGTH(mark(z0)) → c17(LENGTH(z0))
LENGTH(ok(z0)) → c18(LENGTH(z0))
PROPER(eq(z0, z1)) → c19(EQ(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c22(S(proper(z0)), PROPER(z0))
PROPER(inf(z0)) → c24(INF(proper(z0)), PROPER(z0))
PROPER(take(z0, z1)) → c26(TAKE(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(length(z0)) → c28(LENGTH(proper(z0)), PROPER(z0))
EQ(ok(z0), ok(z1)) → c29(EQ(z0, z1))
S(ok(z0)) → c30(S(z0))
CONS(ok(z0), ok(z1)) → c31(CONS(z0, z1))
TOP(mark(z0)) → c32(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c33(TOP(active(z0)), ACTIVE(z0))
ANY(z0) → c34(S(z0))
K tuples:none
Defined Rule Symbols:
active, inf, take, length, proper, eq, s, cons, top, any
Defined Pair Symbols:
INF, TAKE, LENGTH, EQ, S, CONS, TOP, ANY, ACTIVE, PROPER
Compound Symbols:
c12, c13, c14, c15, c16, c17, c18, c29, c30, c31, c32, c33, c34, c1, c3, c5, c7, c8, c9, c10, c11, c19, c22, c24, c26, c28
(5) CdtGraphRemoveDanglingProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 of 26 dangling nodes:
ANY(z0) → c34(S(z0))
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(eq(0, 0)) → mark(true)
active(eq(s(z0), s(z1))) → mark(eq(z0, z1))
active(eq(z0, z1)) → mark(false)
active(inf(z0)) → mark(cons(z0, inf(s(z0))))
active(take(0, z0)) → mark(nil)
active(take(s(z0), cons(z1, z2))) → mark(cons(z1, take(z0, z2)))
active(length(nil)) → mark(0)
active(length(cons(z0, z1))) → mark(s(length(z1)))
active(inf(z0)) → inf(active(z0))
active(take(z0, z1)) → take(active(z0), z1)
active(take(z0, z1)) → take(z0, active(z1))
active(length(z0)) → length(active(z0))
inf(mark(z0)) → mark(inf(z0))
inf(ok(z0)) → ok(inf(z0))
take(mark(z0), z1) → mark(take(z0, z1))
take(z0, mark(z1)) → mark(take(z0, z1))
take(ok(z0), ok(z1)) → ok(take(z0, z1))
length(mark(z0)) → mark(length(z0))
length(ok(z0)) → ok(length(z0))
proper(eq(z0, z1)) → eq(proper(z0), proper(z1))
proper(0) → ok(0)
proper(true) → ok(true)
proper(s(z0)) → s(proper(z0))
proper(false) → ok(false)
proper(inf(z0)) → inf(proper(z0))
proper(cons(any(z0), z1)) → cons(any(any(proper(z0))), any(proper(z1)))
proper(take(z0, z1)) → take(proper(z0), proper(z1))
proper(nil) → ok(nil)
proper(length(z0)) → length(proper(z0))
eq(ok(z0), ok(z1)) → ok(eq(z0, z1))
s(ok(z0)) → ok(s(z0))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
any(z0) → s(z0)
any(proper(z0)) → any(any(any(z0)))
Tuples:
INF(mark(z0)) → c12(INF(z0))
INF(ok(z0)) → c13(INF(z0))
TAKE(mark(z0), z1) → c14(TAKE(z0, z1))
TAKE(z0, mark(z1)) → c15(TAKE(z0, z1))
TAKE(ok(z0), ok(z1)) → c16(TAKE(z0, z1))
LENGTH(mark(z0)) → c17(LENGTH(z0))
LENGTH(ok(z0)) → c18(LENGTH(z0))
EQ(ok(z0), ok(z1)) → c29(EQ(z0, z1))
S(ok(z0)) → c30(S(z0))
CONS(ok(z0), ok(z1)) → c31(CONS(z0, z1))
TOP(mark(z0)) → c32(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c33(TOP(active(z0)), ACTIVE(z0))
ACTIVE(eq(s(z0), s(z1))) → c1(EQ(z0, z1))
ACTIVE(inf(z0)) → c3(CONS(z0, inf(s(z0))), INF(s(z0)), S(z0))
ACTIVE(take(s(z0), cons(z1, z2))) → c5(CONS(z1, take(z0, z2)), TAKE(z0, z2))
ACTIVE(length(cons(z0, z1))) → c7(S(length(z1)), LENGTH(z1))
ACTIVE(inf(z0)) → c8(INF(active(z0)), ACTIVE(z0))
ACTIVE(take(z0, z1)) → c9(TAKE(active(z0), z1), ACTIVE(z0))
ACTIVE(take(z0, z1)) → c10(TAKE(z0, active(z1)), ACTIVE(z1))
ACTIVE(length(z0)) → c11(LENGTH(active(z0)), ACTIVE(z0))
PROPER(eq(z0, z1)) → c19(EQ(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c22(S(proper(z0)), PROPER(z0))
PROPER(inf(z0)) → c24(INF(proper(z0)), PROPER(z0))
PROPER(take(z0, z1)) → c26(TAKE(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(length(z0)) → c28(LENGTH(proper(z0)), PROPER(z0))
S tuples:
ACTIVE(eq(s(z0), s(z1))) → c1(EQ(z0, z1))
ACTIVE(inf(z0)) → c3(CONS(z0, inf(s(z0))), INF(s(z0)), S(z0))
ACTIVE(take(s(z0), cons(z1, z2))) → c5(CONS(z1, take(z0, z2)), TAKE(z0, z2))
ACTIVE(length(cons(z0, z1))) → c7(S(length(z1)), LENGTH(z1))
ACTIVE(inf(z0)) → c8(INF(active(z0)), ACTIVE(z0))
ACTIVE(take(z0, z1)) → c9(TAKE(active(z0), z1), ACTIVE(z0))
ACTIVE(take(z0, z1)) → c10(TAKE(z0, active(z1)), ACTIVE(z1))
ACTIVE(length(z0)) → c11(LENGTH(active(z0)), ACTIVE(z0))
INF(mark(z0)) → c12(INF(z0))
INF(ok(z0)) → c13(INF(z0))
TAKE(mark(z0), z1) → c14(TAKE(z0, z1))
TAKE(z0, mark(z1)) → c15(TAKE(z0, z1))
TAKE(ok(z0), ok(z1)) → c16(TAKE(z0, z1))
LENGTH(mark(z0)) → c17(LENGTH(z0))
LENGTH(ok(z0)) → c18(LENGTH(z0))
PROPER(eq(z0, z1)) → c19(EQ(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c22(S(proper(z0)), PROPER(z0))
PROPER(inf(z0)) → c24(INF(proper(z0)), PROPER(z0))
PROPER(take(z0, z1)) → c26(TAKE(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(length(z0)) → c28(LENGTH(proper(z0)), PROPER(z0))
EQ(ok(z0), ok(z1)) → c29(EQ(z0, z1))
S(ok(z0)) → c30(S(z0))
CONS(ok(z0), ok(z1)) → c31(CONS(z0, z1))
TOP(mark(z0)) → c32(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c33(TOP(active(z0)), ACTIVE(z0))
K tuples:none
Defined Rule Symbols:
active, inf, take, length, proper, eq, s, cons, top, any
Defined Pair Symbols:
INF, TAKE, LENGTH, EQ, S, CONS, TOP, ACTIVE, PROPER
Compound Symbols:
c12, c13, c14, c15, c16, c17, c18, c29, c30, c31, c32, c33, c1, c3, c5, c7, c8, c9, c10, c11, c19, c22, c24, c26, c28
(7) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)
Split RHS of tuples not part of any SCC
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(eq(0, 0)) → mark(true)
active(eq(s(z0), s(z1))) → mark(eq(z0, z1))
active(eq(z0, z1)) → mark(false)
active(inf(z0)) → mark(cons(z0, inf(s(z0))))
active(take(0, z0)) → mark(nil)
active(take(s(z0), cons(z1, z2))) → mark(cons(z1, take(z0, z2)))
active(length(nil)) → mark(0)
active(length(cons(z0, z1))) → mark(s(length(z1)))
active(inf(z0)) → inf(active(z0))
active(take(z0, z1)) → take(active(z0), z1)
active(take(z0, z1)) → take(z0, active(z1))
active(length(z0)) → length(active(z0))
inf(mark(z0)) → mark(inf(z0))
inf(ok(z0)) → ok(inf(z0))
take(mark(z0), z1) → mark(take(z0, z1))
take(z0, mark(z1)) → mark(take(z0, z1))
take(ok(z0), ok(z1)) → ok(take(z0, z1))
length(mark(z0)) → mark(length(z0))
length(ok(z0)) → ok(length(z0))
proper(eq(z0, z1)) → eq(proper(z0), proper(z1))
proper(0) → ok(0)
proper(true) → ok(true)
proper(s(z0)) → s(proper(z0))
proper(false) → ok(false)
proper(inf(z0)) → inf(proper(z0))
proper(cons(any(z0), z1)) → cons(any(any(proper(z0))), any(proper(z1)))
proper(take(z0, z1)) → take(proper(z0), proper(z1))
proper(nil) → ok(nil)
proper(length(z0)) → length(proper(z0))
eq(ok(z0), ok(z1)) → ok(eq(z0, z1))
s(ok(z0)) → ok(s(z0))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
any(z0) → s(z0)
any(proper(z0)) → any(any(any(z0)))
Tuples:
INF(mark(z0)) → c12(INF(z0))
INF(ok(z0)) → c13(INF(z0))
TAKE(mark(z0), z1) → c14(TAKE(z0, z1))
TAKE(z0, mark(z1)) → c15(TAKE(z0, z1))
TAKE(ok(z0), ok(z1)) → c16(TAKE(z0, z1))
LENGTH(mark(z0)) → c17(LENGTH(z0))
LENGTH(ok(z0)) → c18(LENGTH(z0))
EQ(ok(z0), ok(z1)) → c29(EQ(z0, z1))
S(ok(z0)) → c30(S(z0))
CONS(ok(z0), ok(z1)) → c31(CONS(z0, z1))
TOP(mark(z0)) → c32(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c33(TOP(active(z0)), ACTIVE(z0))
ACTIVE(eq(s(z0), s(z1))) → c1(EQ(z0, z1))
ACTIVE(inf(z0)) → c8(INF(active(z0)), ACTIVE(z0))
ACTIVE(take(z0, z1)) → c9(TAKE(active(z0), z1), ACTIVE(z0))
ACTIVE(take(z0, z1)) → c10(TAKE(z0, active(z1)), ACTIVE(z1))
ACTIVE(length(z0)) → c11(LENGTH(active(z0)), ACTIVE(z0))
PROPER(eq(z0, z1)) → c19(EQ(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c22(S(proper(z0)), PROPER(z0))
PROPER(inf(z0)) → c24(INF(proper(z0)), PROPER(z0))
PROPER(take(z0, z1)) → c26(TAKE(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(length(z0)) → c28(LENGTH(proper(z0)), PROPER(z0))
ACTIVE(inf(z0)) → c(CONS(z0, inf(s(z0))))
ACTIVE(inf(z0)) → c(INF(s(z0)))
ACTIVE(inf(z0)) → c(S(z0))
ACTIVE(take(s(z0), cons(z1, z2))) → c(CONS(z1, take(z0, z2)))
ACTIVE(take(s(z0), cons(z1, z2))) → c(TAKE(z0, z2))
ACTIVE(length(cons(z0, z1))) → c(S(length(z1)))
ACTIVE(length(cons(z0, z1))) → c(LENGTH(z1))
S tuples:
ACTIVE(eq(s(z0), s(z1))) → c1(EQ(z0, z1))
ACTIVE(inf(z0)) → c8(INF(active(z0)), ACTIVE(z0))
ACTIVE(take(z0, z1)) → c9(TAKE(active(z0), z1), ACTIVE(z0))
ACTIVE(take(z0, z1)) → c10(TAKE(z0, active(z1)), ACTIVE(z1))
ACTIVE(length(z0)) → c11(LENGTH(active(z0)), ACTIVE(z0))
INF(mark(z0)) → c12(INF(z0))
INF(ok(z0)) → c13(INF(z0))
TAKE(mark(z0), z1) → c14(TAKE(z0, z1))
TAKE(z0, mark(z1)) → c15(TAKE(z0, z1))
TAKE(ok(z0), ok(z1)) → c16(TAKE(z0, z1))
LENGTH(mark(z0)) → c17(LENGTH(z0))
LENGTH(ok(z0)) → c18(LENGTH(z0))
PROPER(eq(z0, z1)) → c19(EQ(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c22(S(proper(z0)), PROPER(z0))
PROPER(inf(z0)) → c24(INF(proper(z0)), PROPER(z0))
PROPER(take(z0, z1)) → c26(TAKE(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(length(z0)) → c28(LENGTH(proper(z0)), PROPER(z0))
EQ(ok(z0), ok(z1)) → c29(EQ(z0, z1))
S(ok(z0)) → c30(S(z0))
CONS(ok(z0), ok(z1)) → c31(CONS(z0, z1))
TOP(mark(z0)) → c32(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c33(TOP(active(z0)), ACTIVE(z0))
ACTIVE(inf(z0)) → c(CONS(z0, inf(s(z0))))
ACTIVE(inf(z0)) → c(INF(s(z0)))
ACTIVE(inf(z0)) → c(S(z0))
ACTIVE(take(s(z0), cons(z1, z2))) → c(CONS(z1, take(z0, z2)))
ACTIVE(take(s(z0), cons(z1, z2))) → c(TAKE(z0, z2))
ACTIVE(length(cons(z0, z1))) → c(S(length(z1)))
ACTIVE(length(cons(z0, z1))) → c(LENGTH(z1))
K tuples:none
Defined Rule Symbols:
active, inf, take, length, proper, eq, s, cons, top, any
Defined Pair Symbols:
INF, TAKE, LENGTH, EQ, S, CONS, TOP, ACTIVE, PROPER
Compound Symbols:
c12, c13, c14, c15, c16, c17, c18, c29, c30, c31, c32, c33, c1, c8, c9, c10, c11, c19, c22, c24, c26, c28, c
(9) CdtGraphRemoveTrailingProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing tuple parts
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(eq(0, 0)) → mark(true)
active(eq(s(z0), s(z1))) → mark(eq(z0, z1))
active(eq(z0, z1)) → mark(false)
active(inf(z0)) → mark(cons(z0, inf(s(z0))))
active(take(0, z0)) → mark(nil)
active(take(s(z0), cons(z1, z2))) → mark(cons(z1, take(z0, z2)))
active(length(nil)) → mark(0)
active(length(cons(z0, z1))) → mark(s(length(z1)))
active(inf(z0)) → inf(active(z0))
active(take(z0, z1)) → take(active(z0), z1)
active(take(z0, z1)) → take(z0, active(z1))
active(length(z0)) → length(active(z0))
inf(mark(z0)) → mark(inf(z0))
inf(ok(z0)) → ok(inf(z0))
take(mark(z0), z1) → mark(take(z0, z1))
take(z0, mark(z1)) → mark(take(z0, z1))
take(ok(z0), ok(z1)) → ok(take(z0, z1))
length(mark(z0)) → mark(length(z0))
length(ok(z0)) → ok(length(z0))
proper(eq(z0, z1)) → eq(proper(z0), proper(z1))
proper(0) → ok(0)
proper(true) → ok(true)
proper(s(z0)) → s(proper(z0))
proper(false) → ok(false)
proper(inf(z0)) → inf(proper(z0))
proper(cons(any(z0), z1)) → cons(any(any(proper(z0))), any(proper(z1)))
proper(take(z0, z1)) → take(proper(z0), proper(z1))
proper(nil) → ok(nil)
proper(length(z0)) → length(proper(z0))
eq(ok(z0), ok(z1)) → ok(eq(z0, z1))
s(ok(z0)) → ok(s(z0))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
any(z0) → s(z0)
any(proper(z0)) → any(any(any(z0)))
Tuples:
INF(mark(z0)) → c12(INF(z0))
INF(ok(z0)) → c13(INF(z0))
TAKE(mark(z0), z1) → c14(TAKE(z0, z1))
TAKE(z0, mark(z1)) → c15(TAKE(z0, z1))
TAKE(ok(z0), ok(z1)) → c16(TAKE(z0, z1))
LENGTH(mark(z0)) → c17(LENGTH(z0))
LENGTH(ok(z0)) → c18(LENGTH(z0))
EQ(ok(z0), ok(z1)) → c29(EQ(z0, z1))
S(ok(z0)) → c30(S(z0))
CONS(ok(z0), ok(z1)) → c31(CONS(z0, z1))
TOP(mark(z0)) → c32(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c33(TOP(active(z0)), ACTIVE(z0))
ACTIVE(eq(s(z0), s(z1))) → c1(EQ(z0, z1))
ACTIVE(inf(z0)) → c8(INF(active(z0)), ACTIVE(z0))
ACTIVE(take(z0, z1)) → c9(TAKE(active(z0), z1), ACTIVE(z0))
ACTIVE(take(z0, z1)) → c10(TAKE(z0, active(z1)), ACTIVE(z1))
ACTIVE(length(z0)) → c11(LENGTH(active(z0)), ACTIVE(z0))
PROPER(eq(z0, z1)) → c19(EQ(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c22(S(proper(z0)), PROPER(z0))
PROPER(inf(z0)) → c24(INF(proper(z0)), PROPER(z0))
PROPER(take(z0, z1)) → c26(TAKE(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(length(z0)) → c28(LENGTH(proper(z0)), PROPER(z0))
ACTIVE(inf(z0)) → c(S(z0))
ACTIVE(take(s(z0), cons(z1, z2))) → c(CONS(z1, take(z0, z2)))
ACTIVE(take(s(z0), cons(z1, z2))) → c(TAKE(z0, z2))
ACTIVE(length(cons(z0, z1))) → c(S(length(z1)))
ACTIVE(length(cons(z0, z1))) → c(LENGTH(z1))
ACTIVE(inf(z0)) → c
S tuples:
ACTIVE(eq(s(z0), s(z1))) → c1(EQ(z0, z1))
ACTIVE(inf(z0)) → c8(INF(active(z0)), ACTIVE(z0))
ACTIVE(take(z0, z1)) → c9(TAKE(active(z0), z1), ACTIVE(z0))
ACTIVE(take(z0, z1)) → c10(TAKE(z0, active(z1)), ACTIVE(z1))
ACTIVE(length(z0)) → c11(LENGTH(active(z0)), ACTIVE(z0))
INF(mark(z0)) → c12(INF(z0))
INF(ok(z0)) → c13(INF(z0))
TAKE(mark(z0), z1) → c14(TAKE(z0, z1))
TAKE(z0, mark(z1)) → c15(TAKE(z0, z1))
TAKE(ok(z0), ok(z1)) → c16(TAKE(z0, z1))
LENGTH(mark(z0)) → c17(LENGTH(z0))
LENGTH(ok(z0)) → c18(LENGTH(z0))
PROPER(eq(z0, z1)) → c19(EQ(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c22(S(proper(z0)), PROPER(z0))
PROPER(inf(z0)) → c24(INF(proper(z0)), PROPER(z0))
PROPER(take(z0, z1)) → c26(TAKE(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(length(z0)) → c28(LENGTH(proper(z0)), PROPER(z0))
EQ(ok(z0), ok(z1)) → c29(EQ(z0, z1))
S(ok(z0)) → c30(S(z0))
CONS(ok(z0), ok(z1)) → c31(CONS(z0, z1))
TOP(mark(z0)) → c32(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c33(TOP(active(z0)), ACTIVE(z0))
ACTIVE(inf(z0)) → c(S(z0))
ACTIVE(take(s(z0), cons(z1, z2))) → c(CONS(z1, take(z0, z2)))
ACTIVE(take(s(z0), cons(z1, z2))) → c(TAKE(z0, z2))
ACTIVE(length(cons(z0, z1))) → c(S(length(z1)))
ACTIVE(length(cons(z0, z1))) → c(LENGTH(z1))
ACTIVE(inf(z0)) → c
K tuples:none
Defined Rule Symbols:
active, inf, take, length, proper, eq, s, cons, top, any
Defined Pair Symbols:
INF, TAKE, LENGTH, EQ, S, CONS, TOP, ACTIVE, PROPER
Compound Symbols:
c12, c13, c14, c15, c16, c17, c18, c29, c30, c31, c32, c33, c1, c8, c9, c10, c11, c19, c22, c24, c26, c28, c, c
(11) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
CONS(ok(z0), ok(z1)) → c31(CONS(z0, z1))
We considered the (Usable) Rules:
length(mark(z0)) → mark(length(z0))
length(ok(z0)) → ok(length(z0))
take(mark(z0), z1) → mark(take(z0, z1))
take(z0, mark(z1)) → mark(take(z0, z1))
take(ok(z0), ok(z1)) → ok(take(z0, z1))
proper(eq(z0, z1)) → eq(proper(z0), proper(z1))
proper(0) → ok(0)
proper(true) → ok(true)
proper(s(z0)) → s(proper(z0))
proper(false) → ok(false)
proper(inf(z0)) → inf(proper(z0))
proper(take(z0, z1)) → take(proper(z0), proper(z1))
proper(nil) → ok(nil)
proper(length(z0)) → length(proper(z0))
inf(mark(z0)) → mark(inf(z0))
inf(ok(z0)) → ok(inf(z0))
s(ok(z0)) → ok(s(z0))
eq(ok(z0), ok(z1)) → ok(eq(z0, z1))
active(eq(0, 0)) → mark(true)
active(eq(s(z0), s(z1))) → mark(eq(z0, z1))
active(eq(z0, z1)) → mark(false)
active(inf(z0)) → mark(cons(z0, inf(s(z0))))
active(take(0, z0)) → mark(nil)
active(take(s(z0), cons(z1, z2))) → mark(cons(z1, take(z0, z2)))
active(length(nil)) → mark(0)
active(length(cons(z0, z1))) → mark(s(length(z1)))
active(inf(z0)) → inf(active(z0))
active(take(z0, z1)) → take(active(z0), z1)
active(take(z0, z1)) → take(z0, active(z1))
active(length(z0)) → length(active(z0))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
And the Tuples:
INF(mark(z0)) → c12(INF(z0))
INF(ok(z0)) → c13(INF(z0))
TAKE(mark(z0), z1) → c14(TAKE(z0, z1))
TAKE(z0, mark(z1)) → c15(TAKE(z0, z1))
TAKE(ok(z0), ok(z1)) → c16(TAKE(z0, z1))
LENGTH(mark(z0)) → c17(LENGTH(z0))
LENGTH(ok(z0)) → c18(LENGTH(z0))
EQ(ok(z0), ok(z1)) → c29(EQ(z0, z1))
S(ok(z0)) → c30(S(z0))
CONS(ok(z0), ok(z1)) → c31(CONS(z0, z1))
TOP(mark(z0)) → c32(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c33(TOP(active(z0)), ACTIVE(z0))
ACTIVE(eq(s(z0), s(z1))) → c1(EQ(z0, z1))
ACTIVE(inf(z0)) → c8(INF(active(z0)), ACTIVE(z0))
ACTIVE(take(z0, z1)) → c9(TAKE(active(z0), z1), ACTIVE(z0))
ACTIVE(take(z0, z1)) → c10(TAKE(z0, active(z1)), ACTIVE(z1))
ACTIVE(length(z0)) → c11(LENGTH(active(z0)), ACTIVE(z0))
PROPER(eq(z0, z1)) → c19(EQ(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c22(S(proper(z0)), PROPER(z0))
PROPER(inf(z0)) → c24(INF(proper(z0)), PROPER(z0))
PROPER(take(z0, z1)) → c26(TAKE(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(length(z0)) → c28(LENGTH(proper(z0)), PROPER(z0))
ACTIVE(inf(z0)) → c(S(z0))
ACTIVE(take(s(z0), cons(z1, z2))) → c(CONS(z1, take(z0, z2)))
ACTIVE(take(s(z0), cons(z1, z2))) → c(TAKE(z0, z2))
ACTIVE(length(cons(z0, z1))) → c(S(length(z1)))
ACTIVE(length(cons(z0, z1))) → c(LENGTH(z1))
ACTIVE(inf(z0)) → c
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(ACTIVE(x1)) = 0
POL(CONS(x1, x2)) = x2
POL(EQ(x1, x2)) = 0
POL(INF(x1)) = 0
POL(LENGTH(x1)) = 0
POL(PROPER(x1)) = 0
POL(S(x1)) = 0
POL(TAKE(x1, x2)) = 0
POL(TOP(x1)) = 0
POL(active(x1)) = 0
POL(c) = 0
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c10(x1, x2)) = x1 + x2
POL(c11(x1, x2)) = x1 + x2
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c14(x1)) = x1
POL(c15(x1)) = x1
POL(c16(x1)) = x1
POL(c17(x1)) = x1
POL(c18(x1)) = x1
POL(c19(x1, x2, x3)) = x1 + x2 + x3
POL(c22(x1, x2)) = x1 + x2
POL(c24(x1, x2)) = x1 + x2
POL(c26(x1, x2, x3)) = x1 + x2 + x3
POL(c28(x1, x2)) = x1 + x2
POL(c29(x1)) = x1
POL(c30(x1)) = x1
POL(c31(x1)) = x1
POL(c32(x1, x2)) = x1 + x2
POL(c33(x1, x2)) = x1 + x2
POL(c8(x1, x2)) = x1 + x2
POL(c9(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = [2] + [4]x1 + [3]x2
POL(eq(x1, x2)) = [2]x1 + [2]x2
POL(false) = 0
POL(inf(x1)) = [3]x1
POL(length(x1)) = [2]x1
POL(mark(x1)) = 0
POL(nil) = [4]
POL(ok(x1)) = [2] + x1
POL(proper(x1)) = [1]
POL(s(x1)) = 0
POL(take(x1, x2)) = 0
POL(true) = [1]
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(eq(0, 0)) → mark(true)
active(eq(s(z0), s(z1))) → mark(eq(z0, z1))
active(eq(z0, z1)) → mark(false)
active(inf(z0)) → mark(cons(z0, inf(s(z0))))
active(take(0, z0)) → mark(nil)
active(take(s(z0), cons(z1, z2))) → mark(cons(z1, take(z0, z2)))
active(length(nil)) → mark(0)
active(length(cons(z0, z1))) → mark(s(length(z1)))
active(inf(z0)) → inf(active(z0))
active(take(z0, z1)) → take(active(z0), z1)
active(take(z0, z1)) → take(z0, active(z1))
active(length(z0)) → length(active(z0))
inf(mark(z0)) → mark(inf(z0))
inf(ok(z0)) → ok(inf(z0))
take(mark(z0), z1) → mark(take(z0, z1))
take(z0, mark(z1)) → mark(take(z0, z1))
take(ok(z0), ok(z1)) → ok(take(z0, z1))
length(mark(z0)) → mark(length(z0))
length(ok(z0)) → ok(length(z0))
proper(eq(z0, z1)) → eq(proper(z0), proper(z1))
proper(0) → ok(0)
proper(true) → ok(true)
proper(s(z0)) → s(proper(z0))
proper(false) → ok(false)
proper(inf(z0)) → inf(proper(z0))
proper(cons(any(z0), z1)) → cons(any(any(proper(z0))), any(proper(z1)))
proper(take(z0, z1)) → take(proper(z0), proper(z1))
proper(nil) → ok(nil)
proper(length(z0)) → length(proper(z0))
eq(ok(z0), ok(z1)) → ok(eq(z0, z1))
s(ok(z0)) → ok(s(z0))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
any(z0) → s(z0)
any(proper(z0)) → any(any(any(z0)))
Tuples:
INF(mark(z0)) → c12(INF(z0))
INF(ok(z0)) → c13(INF(z0))
TAKE(mark(z0), z1) → c14(TAKE(z0, z1))
TAKE(z0, mark(z1)) → c15(TAKE(z0, z1))
TAKE(ok(z0), ok(z1)) → c16(TAKE(z0, z1))
LENGTH(mark(z0)) → c17(LENGTH(z0))
LENGTH(ok(z0)) → c18(LENGTH(z0))
EQ(ok(z0), ok(z1)) → c29(EQ(z0, z1))
S(ok(z0)) → c30(S(z0))
CONS(ok(z0), ok(z1)) → c31(CONS(z0, z1))
TOP(mark(z0)) → c32(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c33(TOP(active(z0)), ACTIVE(z0))
ACTIVE(eq(s(z0), s(z1))) → c1(EQ(z0, z1))
ACTIVE(inf(z0)) → c8(INF(active(z0)), ACTIVE(z0))
ACTIVE(take(z0, z1)) → c9(TAKE(active(z0), z1), ACTIVE(z0))
ACTIVE(take(z0, z1)) → c10(TAKE(z0, active(z1)), ACTIVE(z1))
ACTIVE(length(z0)) → c11(LENGTH(active(z0)), ACTIVE(z0))
PROPER(eq(z0, z1)) → c19(EQ(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c22(S(proper(z0)), PROPER(z0))
PROPER(inf(z0)) → c24(INF(proper(z0)), PROPER(z0))
PROPER(take(z0, z1)) → c26(TAKE(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(length(z0)) → c28(LENGTH(proper(z0)), PROPER(z0))
ACTIVE(inf(z0)) → c(S(z0))
ACTIVE(take(s(z0), cons(z1, z2))) → c(CONS(z1, take(z0, z2)))
ACTIVE(take(s(z0), cons(z1, z2))) → c(TAKE(z0, z2))
ACTIVE(length(cons(z0, z1))) → c(S(length(z1)))
ACTIVE(length(cons(z0, z1))) → c(LENGTH(z1))
ACTIVE(inf(z0)) → c
S tuples:
ACTIVE(eq(s(z0), s(z1))) → c1(EQ(z0, z1))
ACTIVE(inf(z0)) → c8(INF(active(z0)), ACTIVE(z0))
ACTIVE(take(z0, z1)) → c9(TAKE(active(z0), z1), ACTIVE(z0))
ACTIVE(take(z0, z1)) → c10(TAKE(z0, active(z1)), ACTIVE(z1))
ACTIVE(length(z0)) → c11(LENGTH(active(z0)), ACTIVE(z0))
INF(mark(z0)) → c12(INF(z0))
INF(ok(z0)) → c13(INF(z0))
TAKE(mark(z0), z1) → c14(TAKE(z0, z1))
TAKE(z0, mark(z1)) → c15(TAKE(z0, z1))
TAKE(ok(z0), ok(z1)) → c16(TAKE(z0, z1))
LENGTH(mark(z0)) → c17(LENGTH(z0))
LENGTH(ok(z0)) → c18(LENGTH(z0))
PROPER(eq(z0, z1)) → c19(EQ(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c22(S(proper(z0)), PROPER(z0))
PROPER(inf(z0)) → c24(INF(proper(z0)), PROPER(z0))
PROPER(take(z0, z1)) → c26(TAKE(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(length(z0)) → c28(LENGTH(proper(z0)), PROPER(z0))
EQ(ok(z0), ok(z1)) → c29(EQ(z0, z1))
S(ok(z0)) → c30(S(z0))
TOP(mark(z0)) → c32(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c33(TOP(active(z0)), ACTIVE(z0))
ACTIVE(inf(z0)) → c(S(z0))
ACTIVE(take(s(z0), cons(z1, z2))) → c(CONS(z1, take(z0, z2)))
ACTIVE(take(s(z0), cons(z1, z2))) → c(TAKE(z0, z2))
ACTIVE(length(cons(z0, z1))) → c(S(length(z1)))
ACTIVE(length(cons(z0, z1))) → c(LENGTH(z1))
ACTIVE(inf(z0)) → c
K tuples:
CONS(ok(z0), ok(z1)) → c31(CONS(z0, z1))
Defined Rule Symbols:
active, inf, take, length, proper, eq, s, cons, top, any
Defined Pair Symbols:
INF, TAKE, LENGTH, EQ, S, CONS, TOP, ACTIVE, PROPER
Compound Symbols:
c12, c13, c14, c15, c16, c17, c18, c29, c30, c31, c32, c33, c1, c8, c9, c10, c11, c19, c22, c24, c26, c28, c, c
(13) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
TOP(
mark(
z0)) →
c32(
TOP(
proper(
z0)),
PROPER(
z0)) by
TOP(mark(eq(z0, z1))) → c32(TOP(eq(proper(z0), proper(z1))), PROPER(eq(z0, z1)))
TOP(mark(0)) → c32(TOP(ok(0)), PROPER(0))
TOP(mark(true)) → c32(TOP(ok(true)), PROPER(true))
TOP(mark(s(z0))) → c32(TOP(s(proper(z0))), PROPER(s(z0)))
TOP(mark(false)) → c32(TOP(ok(false)), PROPER(false))
TOP(mark(inf(z0))) → c32(TOP(inf(proper(z0))), PROPER(inf(z0)))
TOP(mark(take(z0, z1))) → c32(TOP(take(proper(z0), proper(z1))), PROPER(take(z0, z1)))
TOP(mark(nil)) → c32(TOP(ok(nil)), PROPER(nil))
TOP(mark(length(z0))) → c32(TOP(length(proper(z0))), PROPER(length(z0)))
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(eq(0, 0)) → mark(true)
active(eq(s(z0), s(z1))) → mark(eq(z0, z1))
active(eq(z0, z1)) → mark(false)
active(inf(z0)) → mark(cons(z0, inf(s(z0))))
active(take(0, z0)) → mark(nil)
active(take(s(z0), cons(z1, z2))) → mark(cons(z1, take(z0, z2)))
active(length(nil)) → mark(0)
active(length(cons(z0, z1))) → mark(s(length(z1)))
active(inf(z0)) → inf(active(z0))
active(take(z0, z1)) → take(active(z0), z1)
active(take(z0, z1)) → take(z0, active(z1))
active(length(z0)) → length(active(z0))
inf(mark(z0)) → mark(inf(z0))
inf(ok(z0)) → ok(inf(z0))
take(mark(z0), z1) → mark(take(z0, z1))
take(z0, mark(z1)) → mark(take(z0, z1))
take(ok(z0), ok(z1)) → ok(take(z0, z1))
length(mark(z0)) → mark(length(z0))
length(ok(z0)) → ok(length(z0))
proper(eq(z0, z1)) → eq(proper(z0), proper(z1))
proper(0) → ok(0)
proper(true) → ok(true)
proper(s(z0)) → s(proper(z0))
proper(false) → ok(false)
proper(inf(z0)) → inf(proper(z0))
proper(cons(any(z0), z1)) → cons(any(any(proper(z0))), any(proper(z1)))
proper(take(z0, z1)) → take(proper(z0), proper(z1))
proper(nil) → ok(nil)
proper(length(z0)) → length(proper(z0))
eq(ok(z0), ok(z1)) → ok(eq(z0, z1))
s(ok(z0)) → ok(s(z0))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
any(z0) → s(z0)
any(proper(z0)) → any(any(any(z0)))
Tuples:
INF(mark(z0)) → c12(INF(z0))
INF(ok(z0)) → c13(INF(z0))
TAKE(mark(z0), z1) → c14(TAKE(z0, z1))
TAKE(z0, mark(z1)) → c15(TAKE(z0, z1))
TAKE(ok(z0), ok(z1)) → c16(TAKE(z0, z1))
LENGTH(mark(z0)) → c17(LENGTH(z0))
LENGTH(ok(z0)) → c18(LENGTH(z0))
EQ(ok(z0), ok(z1)) → c29(EQ(z0, z1))
S(ok(z0)) → c30(S(z0))
CONS(ok(z0), ok(z1)) → c31(CONS(z0, z1))
TOP(ok(z0)) → c33(TOP(active(z0)), ACTIVE(z0))
ACTIVE(eq(s(z0), s(z1))) → c1(EQ(z0, z1))
ACTIVE(inf(z0)) → c8(INF(active(z0)), ACTIVE(z0))
ACTIVE(take(z0, z1)) → c9(TAKE(active(z0), z1), ACTIVE(z0))
ACTIVE(take(z0, z1)) → c10(TAKE(z0, active(z1)), ACTIVE(z1))
ACTIVE(length(z0)) → c11(LENGTH(active(z0)), ACTIVE(z0))
PROPER(eq(z0, z1)) → c19(EQ(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c22(S(proper(z0)), PROPER(z0))
PROPER(inf(z0)) → c24(INF(proper(z0)), PROPER(z0))
PROPER(take(z0, z1)) → c26(TAKE(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(length(z0)) → c28(LENGTH(proper(z0)), PROPER(z0))
ACTIVE(inf(z0)) → c(S(z0))
ACTIVE(take(s(z0), cons(z1, z2))) → c(CONS(z1, take(z0, z2)))
ACTIVE(take(s(z0), cons(z1, z2))) → c(TAKE(z0, z2))
ACTIVE(length(cons(z0, z1))) → c(S(length(z1)))
ACTIVE(length(cons(z0, z1))) → c(LENGTH(z1))
ACTIVE(inf(z0)) → c
TOP(mark(eq(z0, z1))) → c32(TOP(eq(proper(z0), proper(z1))), PROPER(eq(z0, z1)))
TOP(mark(0)) → c32(TOP(ok(0)), PROPER(0))
TOP(mark(true)) → c32(TOP(ok(true)), PROPER(true))
TOP(mark(s(z0))) → c32(TOP(s(proper(z0))), PROPER(s(z0)))
TOP(mark(false)) → c32(TOP(ok(false)), PROPER(false))
TOP(mark(inf(z0))) → c32(TOP(inf(proper(z0))), PROPER(inf(z0)))
TOP(mark(take(z0, z1))) → c32(TOP(take(proper(z0), proper(z1))), PROPER(take(z0, z1)))
TOP(mark(nil)) → c32(TOP(ok(nil)), PROPER(nil))
TOP(mark(length(z0))) → c32(TOP(length(proper(z0))), PROPER(length(z0)))
S tuples:
ACTIVE(eq(s(z0), s(z1))) → c1(EQ(z0, z1))
ACTIVE(inf(z0)) → c8(INF(active(z0)), ACTIVE(z0))
ACTIVE(take(z0, z1)) → c9(TAKE(active(z0), z1), ACTIVE(z0))
ACTIVE(take(z0, z1)) → c10(TAKE(z0, active(z1)), ACTIVE(z1))
ACTIVE(length(z0)) → c11(LENGTH(active(z0)), ACTIVE(z0))
INF(mark(z0)) → c12(INF(z0))
INF(ok(z0)) → c13(INF(z0))
TAKE(mark(z0), z1) → c14(TAKE(z0, z1))
TAKE(z0, mark(z1)) → c15(TAKE(z0, z1))
TAKE(ok(z0), ok(z1)) → c16(TAKE(z0, z1))
LENGTH(mark(z0)) → c17(LENGTH(z0))
LENGTH(ok(z0)) → c18(LENGTH(z0))
PROPER(eq(z0, z1)) → c19(EQ(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c22(S(proper(z0)), PROPER(z0))
PROPER(inf(z0)) → c24(INF(proper(z0)), PROPER(z0))
PROPER(take(z0, z1)) → c26(TAKE(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(length(z0)) → c28(LENGTH(proper(z0)), PROPER(z0))
EQ(ok(z0), ok(z1)) → c29(EQ(z0, z1))
S(ok(z0)) → c30(S(z0))
TOP(ok(z0)) → c33(TOP(active(z0)), ACTIVE(z0))
ACTIVE(inf(z0)) → c(S(z0))
ACTIVE(take(s(z0), cons(z1, z2))) → c(CONS(z1, take(z0, z2)))
ACTIVE(take(s(z0), cons(z1, z2))) → c(TAKE(z0, z2))
ACTIVE(length(cons(z0, z1))) → c(S(length(z1)))
ACTIVE(length(cons(z0, z1))) → c(LENGTH(z1))
ACTIVE(inf(z0)) → c
TOP(mark(eq(z0, z1))) → c32(TOP(eq(proper(z0), proper(z1))), PROPER(eq(z0, z1)))
TOP(mark(0)) → c32(TOP(ok(0)), PROPER(0))
TOP(mark(true)) → c32(TOP(ok(true)), PROPER(true))
TOP(mark(s(z0))) → c32(TOP(s(proper(z0))), PROPER(s(z0)))
TOP(mark(false)) → c32(TOP(ok(false)), PROPER(false))
TOP(mark(inf(z0))) → c32(TOP(inf(proper(z0))), PROPER(inf(z0)))
TOP(mark(take(z0, z1))) → c32(TOP(take(proper(z0), proper(z1))), PROPER(take(z0, z1)))
TOP(mark(nil)) → c32(TOP(ok(nil)), PROPER(nil))
TOP(mark(length(z0))) → c32(TOP(length(proper(z0))), PROPER(length(z0)))
K tuples:
CONS(ok(z0), ok(z1)) → c31(CONS(z0, z1))
Defined Rule Symbols:
active, inf, take, length, proper, eq, s, cons, top, any
Defined Pair Symbols:
INF, TAKE, LENGTH, EQ, S, CONS, TOP, ACTIVE, PROPER
Compound Symbols:
c12, c13, c14, c15, c16, c17, c18, c29, c30, c31, c33, c1, c8, c9, c10, c11, c19, c22, c24, c26, c28, c, c, c32
(15) CdtGraphRemoveDanglingProof (ComplexityIfPolyImplication transformation)
Removed 1 of 36 dangling nodes:
ACTIVE(inf(z0)) → c
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(eq(0, 0)) → mark(true)
active(eq(s(z0), s(z1))) → mark(eq(z0, z1))
active(eq(z0, z1)) → mark(false)
active(inf(z0)) → mark(cons(z0, inf(s(z0))))
active(take(0, z0)) → mark(nil)
active(take(s(z0), cons(z1, z2))) → mark(cons(z1, take(z0, z2)))
active(length(nil)) → mark(0)
active(length(cons(z0, z1))) → mark(s(length(z1)))
active(inf(z0)) → inf(active(z0))
active(take(z0, z1)) → take(active(z0), z1)
active(take(z0, z1)) → take(z0, active(z1))
active(length(z0)) → length(active(z0))
inf(mark(z0)) → mark(inf(z0))
inf(ok(z0)) → ok(inf(z0))
take(mark(z0), z1) → mark(take(z0, z1))
take(z0, mark(z1)) → mark(take(z0, z1))
take(ok(z0), ok(z1)) → ok(take(z0, z1))
length(mark(z0)) → mark(length(z0))
length(ok(z0)) → ok(length(z0))
proper(eq(z0, z1)) → eq(proper(z0), proper(z1))
proper(0) → ok(0)
proper(true) → ok(true)
proper(s(z0)) → s(proper(z0))
proper(false) → ok(false)
proper(inf(z0)) → inf(proper(z0))
proper(cons(any(z0), z1)) → cons(any(any(proper(z0))), any(proper(z1)))
proper(take(z0, z1)) → take(proper(z0), proper(z1))
proper(nil) → ok(nil)
proper(length(z0)) → length(proper(z0))
eq(ok(z0), ok(z1)) → ok(eq(z0, z1))
s(ok(z0)) → ok(s(z0))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
any(z0) → s(z0)
any(proper(z0)) → any(any(any(z0)))
Tuples:
INF(mark(z0)) → c12(INF(z0))
INF(ok(z0)) → c13(INF(z0))
TAKE(mark(z0), z1) → c14(TAKE(z0, z1))
TAKE(z0, mark(z1)) → c15(TAKE(z0, z1))
TAKE(ok(z0), ok(z1)) → c16(TAKE(z0, z1))
LENGTH(mark(z0)) → c17(LENGTH(z0))
LENGTH(ok(z0)) → c18(LENGTH(z0))
EQ(ok(z0), ok(z1)) → c29(EQ(z0, z1))
S(ok(z0)) → c30(S(z0))
CONS(ok(z0), ok(z1)) → c31(CONS(z0, z1))
TOP(ok(z0)) → c33(TOP(active(z0)), ACTIVE(z0))
ACTIVE(eq(s(z0), s(z1))) → c1(EQ(z0, z1))
ACTIVE(inf(z0)) → c8(INF(active(z0)), ACTIVE(z0))
ACTIVE(take(z0, z1)) → c9(TAKE(active(z0), z1), ACTIVE(z0))
ACTIVE(take(z0, z1)) → c10(TAKE(z0, active(z1)), ACTIVE(z1))
ACTIVE(length(z0)) → c11(LENGTH(active(z0)), ACTIVE(z0))
PROPER(eq(z0, z1)) → c19(EQ(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c22(S(proper(z0)), PROPER(z0))
PROPER(inf(z0)) → c24(INF(proper(z0)), PROPER(z0))
PROPER(take(z0, z1)) → c26(TAKE(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(length(z0)) → c28(LENGTH(proper(z0)), PROPER(z0))
ACTIVE(inf(z0)) → c(S(z0))
ACTIVE(take(s(z0), cons(z1, z2))) → c(CONS(z1, take(z0, z2)))
ACTIVE(take(s(z0), cons(z1, z2))) → c(TAKE(z0, z2))
ACTIVE(length(cons(z0, z1))) → c(S(length(z1)))
ACTIVE(length(cons(z0, z1))) → c(LENGTH(z1))
TOP(mark(eq(z0, z1))) → c32(TOP(eq(proper(z0), proper(z1))), PROPER(eq(z0, z1)))
TOP(mark(0)) → c32(TOP(ok(0)), PROPER(0))
TOP(mark(true)) → c32(TOP(ok(true)), PROPER(true))
TOP(mark(s(z0))) → c32(TOP(s(proper(z0))), PROPER(s(z0)))
TOP(mark(false)) → c32(TOP(ok(false)), PROPER(false))
TOP(mark(inf(z0))) → c32(TOP(inf(proper(z0))), PROPER(inf(z0)))
TOP(mark(take(z0, z1))) → c32(TOP(take(proper(z0), proper(z1))), PROPER(take(z0, z1)))
TOP(mark(nil)) → c32(TOP(ok(nil)), PROPER(nil))
TOP(mark(length(z0))) → c32(TOP(length(proper(z0))), PROPER(length(z0)))
S tuples:
ACTIVE(eq(s(z0), s(z1))) → c1(EQ(z0, z1))
ACTIVE(inf(z0)) → c8(INF(active(z0)), ACTIVE(z0))
ACTIVE(take(z0, z1)) → c9(TAKE(active(z0), z1), ACTIVE(z0))
ACTIVE(take(z0, z1)) → c10(TAKE(z0, active(z1)), ACTIVE(z1))
ACTIVE(length(z0)) → c11(LENGTH(active(z0)), ACTIVE(z0))
INF(mark(z0)) → c12(INF(z0))
INF(ok(z0)) → c13(INF(z0))
TAKE(mark(z0), z1) → c14(TAKE(z0, z1))
TAKE(z0, mark(z1)) → c15(TAKE(z0, z1))
TAKE(ok(z0), ok(z1)) → c16(TAKE(z0, z1))
LENGTH(mark(z0)) → c17(LENGTH(z0))
LENGTH(ok(z0)) → c18(LENGTH(z0))
PROPER(eq(z0, z1)) → c19(EQ(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c22(S(proper(z0)), PROPER(z0))
PROPER(inf(z0)) → c24(INF(proper(z0)), PROPER(z0))
PROPER(take(z0, z1)) → c26(TAKE(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(length(z0)) → c28(LENGTH(proper(z0)), PROPER(z0))
EQ(ok(z0), ok(z1)) → c29(EQ(z0, z1))
S(ok(z0)) → c30(S(z0))
TOP(ok(z0)) → c33(TOP(active(z0)), ACTIVE(z0))
ACTIVE(inf(z0)) → c(S(z0))
ACTIVE(take(s(z0), cons(z1, z2))) → c(CONS(z1, take(z0, z2)))
ACTIVE(take(s(z0), cons(z1, z2))) → c(TAKE(z0, z2))
ACTIVE(length(cons(z0, z1))) → c(S(length(z1)))
ACTIVE(length(cons(z0, z1))) → c(LENGTH(z1))
TOP(mark(eq(z0, z1))) → c32(TOP(eq(proper(z0), proper(z1))), PROPER(eq(z0, z1)))
TOP(mark(0)) → c32(TOP(ok(0)), PROPER(0))
TOP(mark(true)) → c32(TOP(ok(true)), PROPER(true))
TOP(mark(s(z0))) → c32(TOP(s(proper(z0))), PROPER(s(z0)))
TOP(mark(false)) → c32(TOP(ok(false)), PROPER(false))
TOP(mark(inf(z0))) → c32(TOP(inf(proper(z0))), PROPER(inf(z0)))
TOP(mark(take(z0, z1))) → c32(TOP(take(proper(z0), proper(z1))), PROPER(take(z0, z1)))
TOP(mark(nil)) → c32(TOP(ok(nil)), PROPER(nil))
TOP(mark(length(z0))) → c32(TOP(length(proper(z0))), PROPER(length(z0)))
K tuples:
CONS(ok(z0), ok(z1)) → c31(CONS(z0, z1))
Defined Rule Symbols:
active, inf, take, length, proper, eq, s, cons, top, any
Defined Pair Symbols:
INF, TAKE, LENGTH, EQ, S, CONS, TOP, ACTIVE, PROPER
Compound Symbols:
c12, c13, c14, c15, c16, c17, c18, c29, c30, c31, c33, c1, c8, c9, c10, c11, c19, c22, c24, c26, c28, c, c32
(17) CdtGraphRemoveTrailingProof (BOTH BOUNDS(ID, ID) transformation)
Removed 4 trailing tuple parts
(18) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(eq(0, 0)) → mark(true)
active(eq(s(z0), s(z1))) → mark(eq(z0, z1))
active(eq(z0, z1)) → mark(false)
active(inf(z0)) → mark(cons(z0, inf(s(z0))))
active(take(0, z0)) → mark(nil)
active(take(s(z0), cons(z1, z2))) → mark(cons(z1, take(z0, z2)))
active(length(nil)) → mark(0)
active(length(cons(z0, z1))) → mark(s(length(z1)))
active(inf(z0)) → inf(active(z0))
active(take(z0, z1)) → take(active(z0), z1)
active(take(z0, z1)) → take(z0, active(z1))
active(length(z0)) → length(active(z0))
inf(mark(z0)) → mark(inf(z0))
inf(ok(z0)) → ok(inf(z0))
take(mark(z0), z1) → mark(take(z0, z1))
take(z0, mark(z1)) → mark(take(z0, z1))
take(ok(z0), ok(z1)) → ok(take(z0, z1))
length(mark(z0)) → mark(length(z0))
length(ok(z0)) → ok(length(z0))
proper(eq(z0, z1)) → eq(proper(z0), proper(z1))
proper(0) → ok(0)
proper(true) → ok(true)
proper(s(z0)) → s(proper(z0))
proper(false) → ok(false)
proper(inf(z0)) → inf(proper(z0))
proper(cons(any(z0), z1)) → cons(any(any(proper(z0))), any(proper(z1)))
proper(take(z0, z1)) → take(proper(z0), proper(z1))
proper(nil) → ok(nil)
proper(length(z0)) → length(proper(z0))
eq(ok(z0), ok(z1)) → ok(eq(z0, z1))
s(ok(z0)) → ok(s(z0))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
any(z0) → s(z0)
any(proper(z0)) → any(any(any(z0)))
Tuples:
INF(mark(z0)) → c12(INF(z0))
INF(ok(z0)) → c13(INF(z0))
TAKE(mark(z0), z1) → c14(TAKE(z0, z1))
TAKE(z0, mark(z1)) → c15(TAKE(z0, z1))
TAKE(ok(z0), ok(z1)) → c16(TAKE(z0, z1))
LENGTH(mark(z0)) → c17(LENGTH(z0))
LENGTH(ok(z0)) → c18(LENGTH(z0))
EQ(ok(z0), ok(z1)) → c29(EQ(z0, z1))
S(ok(z0)) → c30(S(z0))
CONS(ok(z0), ok(z1)) → c31(CONS(z0, z1))
TOP(ok(z0)) → c33(TOP(active(z0)), ACTIVE(z0))
ACTIVE(eq(s(z0), s(z1))) → c1(EQ(z0, z1))
ACTIVE(inf(z0)) → c8(INF(active(z0)), ACTIVE(z0))
ACTIVE(take(z0, z1)) → c9(TAKE(active(z0), z1), ACTIVE(z0))
ACTIVE(take(z0, z1)) → c10(TAKE(z0, active(z1)), ACTIVE(z1))
ACTIVE(length(z0)) → c11(LENGTH(active(z0)), ACTIVE(z0))
PROPER(eq(z0, z1)) → c19(EQ(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c22(S(proper(z0)), PROPER(z0))
PROPER(inf(z0)) → c24(INF(proper(z0)), PROPER(z0))
PROPER(take(z0, z1)) → c26(TAKE(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(length(z0)) → c28(LENGTH(proper(z0)), PROPER(z0))
ACTIVE(inf(z0)) → c(S(z0))
ACTIVE(take(s(z0), cons(z1, z2))) → c(CONS(z1, take(z0, z2)))
ACTIVE(take(s(z0), cons(z1, z2))) → c(TAKE(z0, z2))
ACTIVE(length(cons(z0, z1))) → c(S(length(z1)))
ACTIVE(length(cons(z0, z1))) → c(LENGTH(z1))
TOP(mark(eq(z0, z1))) → c32(TOP(eq(proper(z0), proper(z1))), PROPER(eq(z0, z1)))
TOP(mark(s(z0))) → c32(TOP(s(proper(z0))), PROPER(s(z0)))
TOP(mark(inf(z0))) → c32(TOP(inf(proper(z0))), PROPER(inf(z0)))
TOP(mark(take(z0, z1))) → c32(TOP(take(proper(z0), proper(z1))), PROPER(take(z0, z1)))
TOP(mark(length(z0))) → c32(TOP(length(proper(z0))), PROPER(length(z0)))
TOP(mark(0)) → c32(TOP(ok(0)))
TOP(mark(true)) → c32(TOP(ok(true)))
TOP(mark(false)) → c32(TOP(ok(false)))
TOP(mark(nil)) → c32(TOP(ok(nil)))
S tuples:
ACTIVE(eq(s(z0), s(z1))) → c1(EQ(z0, z1))
ACTIVE(inf(z0)) → c8(INF(active(z0)), ACTIVE(z0))
ACTIVE(take(z0, z1)) → c9(TAKE(active(z0), z1), ACTIVE(z0))
ACTIVE(take(z0, z1)) → c10(TAKE(z0, active(z1)), ACTIVE(z1))
ACTIVE(length(z0)) → c11(LENGTH(active(z0)), ACTIVE(z0))
INF(mark(z0)) → c12(INF(z0))
INF(ok(z0)) → c13(INF(z0))
TAKE(mark(z0), z1) → c14(TAKE(z0, z1))
TAKE(z0, mark(z1)) → c15(TAKE(z0, z1))
TAKE(ok(z0), ok(z1)) → c16(TAKE(z0, z1))
LENGTH(mark(z0)) → c17(LENGTH(z0))
LENGTH(ok(z0)) → c18(LENGTH(z0))
PROPER(eq(z0, z1)) → c19(EQ(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c22(S(proper(z0)), PROPER(z0))
PROPER(inf(z0)) → c24(INF(proper(z0)), PROPER(z0))
PROPER(take(z0, z1)) → c26(TAKE(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(length(z0)) → c28(LENGTH(proper(z0)), PROPER(z0))
EQ(ok(z0), ok(z1)) → c29(EQ(z0, z1))
S(ok(z0)) → c30(S(z0))
TOP(ok(z0)) → c33(TOP(active(z0)), ACTIVE(z0))
ACTIVE(inf(z0)) → c(S(z0))
ACTIVE(take(s(z0), cons(z1, z2))) → c(CONS(z1, take(z0, z2)))
ACTIVE(take(s(z0), cons(z1, z2))) → c(TAKE(z0, z2))
ACTIVE(length(cons(z0, z1))) → c(S(length(z1)))
ACTIVE(length(cons(z0, z1))) → c(LENGTH(z1))
TOP(mark(eq(z0, z1))) → c32(TOP(eq(proper(z0), proper(z1))), PROPER(eq(z0, z1)))
TOP(mark(s(z0))) → c32(TOP(s(proper(z0))), PROPER(s(z0)))
TOP(mark(inf(z0))) → c32(TOP(inf(proper(z0))), PROPER(inf(z0)))
TOP(mark(take(z0, z1))) → c32(TOP(take(proper(z0), proper(z1))), PROPER(take(z0, z1)))
TOP(mark(length(z0))) → c32(TOP(length(proper(z0))), PROPER(length(z0)))
TOP(mark(0)) → c32(TOP(ok(0)))
TOP(mark(true)) → c32(TOP(ok(true)))
TOP(mark(false)) → c32(TOP(ok(false)))
TOP(mark(nil)) → c32(TOP(ok(nil)))
K tuples:
CONS(ok(z0), ok(z1)) → c31(CONS(z0, z1))
Defined Rule Symbols:
active, inf, take, length, proper, eq, s, cons, top, any
Defined Pair Symbols:
INF, TAKE, LENGTH, EQ, S, CONS, TOP, ACTIVE, PROPER
Compound Symbols:
c12, c13, c14, c15, c16, c17, c18, c29, c30, c31, c33, c1, c8, c9, c10, c11, c19, c22, c24, c26, c28, c, c32, c32
(19) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
TOP(mark(false)) → c32(TOP(ok(false)))
We considered the (Usable) Rules:
proper(eq(z0, z1)) → eq(proper(z0), proper(z1))
proper(0) → ok(0)
proper(true) → ok(true)
proper(s(z0)) → s(proper(z0))
proper(false) → ok(false)
proper(inf(z0)) → inf(proper(z0))
proper(take(z0, z1)) → take(proper(z0), proper(z1))
proper(nil) → ok(nil)
proper(length(z0)) → length(proper(z0))
length(mark(z0)) → mark(length(z0))
length(ok(z0)) → ok(length(z0))
take(mark(z0), z1) → mark(take(z0, z1))
take(z0, mark(z1)) → mark(take(z0, z1))
take(ok(z0), ok(z1)) → ok(take(z0, z1))
inf(mark(z0)) → mark(inf(z0))
inf(ok(z0)) → ok(inf(z0))
s(ok(z0)) → ok(s(z0))
eq(ok(z0), ok(z1)) → ok(eq(z0, z1))
active(eq(0, 0)) → mark(true)
active(eq(s(z0), s(z1))) → mark(eq(z0, z1))
active(eq(z0, z1)) → mark(false)
active(inf(z0)) → mark(cons(z0, inf(s(z0))))
active(take(0, z0)) → mark(nil)
active(take(s(z0), cons(z1, z2))) → mark(cons(z1, take(z0, z2)))
active(length(nil)) → mark(0)
active(length(cons(z0, z1))) → mark(s(length(z1)))
active(inf(z0)) → inf(active(z0))
active(take(z0, z1)) → take(active(z0), z1)
active(take(z0, z1)) → take(z0, active(z1))
active(length(z0)) → length(active(z0))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
And the Tuples:
INF(mark(z0)) → c12(INF(z0))
INF(ok(z0)) → c13(INF(z0))
TAKE(mark(z0), z1) → c14(TAKE(z0, z1))
TAKE(z0, mark(z1)) → c15(TAKE(z0, z1))
TAKE(ok(z0), ok(z1)) → c16(TAKE(z0, z1))
LENGTH(mark(z0)) → c17(LENGTH(z0))
LENGTH(ok(z0)) → c18(LENGTH(z0))
EQ(ok(z0), ok(z1)) → c29(EQ(z0, z1))
S(ok(z0)) → c30(S(z0))
CONS(ok(z0), ok(z1)) → c31(CONS(z0, z1))
TOP(ok(z0)) → c33(TOP(active(z0)), ACTIVE(z0))
ACTIVE(eq(s(z0), s(z1))) → c1(EQ(z0, z1))
ACTIVE(inf(z0)) → c8(INF(active(z0)), ACTIVE(z0))
ACTIVE(take(z0, z1)) → c9(TAKE(active(z0), z1), ACTIVE(z0))
ACTIVE(take(z0, z1)) → c10(TAKE(z0, active(z1)), ACTIVE(z1))
ACTIVE(length(z0)) → c11(LENGTH(active(z0)), ACTIVE(z0))
PROPER(eq(z0, z1)) → c19(EQ(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c22(S(proper(z0)), PROPER(z0))
PROPER(inf(z0)) → c24(INF(proper(z0)), PROPER(z0))
PROPER(take(z0, z1)) → c26(TAKE(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(length(z0)) → c28(LENGTH(proper(z0)), PROPER(z0))
ACTIVE(inf(z0)) → c(S(z0))
ACTIVE(take(s(z0), cons(z1, z2))) → c(CONS(z1, take(z0, z2)))
ACTIVE(take(s(z0), cons(z1, z2))) → c(TAKE(z0, z2))
ACTIVE(length(cons(z0, z1))) → c(S(length(z1)))
ACTIVE(length(cons(z0, z1))) → c(LENGTH(z1))
TOP(mark(eq(z0, z1))) → c32(TOP(eq(proper(z0), proper(z1))), PROPER(eq(z0, z1)))
TOP(mark(s(z0))) → c32(TOP(s(proper(z0))), PROPER(s(z0)))
TOP(mark(inf(z0))) → c32(TOP(inf(proper(z0))), PROPER(inf(z0)))
TOP(mark(take(z0, z1))) → c32(TOP(take(proper(z0), proper(z1))), PROPER(take(z0, z1)))
TOP(mark(length(z0))) → c32(TOP(length(proper(z0))), PROPER(length(z0)))
TOP(mark(0)) → c32(TOP(ok(0)))
TOP(mark(true)) → c32(TOP(ok(true)))
TOP(mark(false)) → c32(TOP(ok(false)))
TOP(mark(nil)) → c32(TOP(ok(nil)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(ACTIVE(x1)) = 0
POL(CONS(x1, x2)) = 0
POL(EQ(x1, x2)) = 0
POL(INF(x1)) = 0
POL(LENGTH(x1)) = 0
POL(PROPER(x1)) = 0
POL(S(x1)) = 0
POL(TAKE(x1, x2)) = 0
POL(TOP(x1)) = x1
POL(active(x1)) = x1
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c10(x1, x2)) = x1 + x2
POL(c11(x1, x2)) = x1 + x2
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c14(x1)) = x1
POL(c15(x1)) = x1
POL(c16(x1)) = x1
POL(c17(x1)) = x1
POL(c18(x1)) = x1
POL(c19(x1, x2, x3)) = x1 + x2 + x3
POL(c22(x1, x2)) = x1 + x2
POL(c24(x1, x2)) = x1 + x2
POL(c26(x1, x2, x3)) = x1 + x2 + x3
POL(c28(x1, x2)) = x1 + x2
POL(c29(x1)) = x1
POL(c30(x1)) = x1
POL(c31(x1)) = x1
POL(c32(x1)) = x1
POL(c32(x1, x2)) = x1 + x2
POL(c33(x1, x2)) = x1 + x2
POL(c8(x1, x2)) = x1 + x2
POL(c9(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = 0
POL(eq(x1, x2)) = [1]
POL(false) = 0
POL(inf(x1)) = [1]
POL(length(x1)) = [1]
POL(mark(x1)) = [1]
POL(nil) = 0
POL(ok(x1)) = x1
POL(proper(x1)) = 0
POL(s(x1)) = 0
POL(take(x1, x2)) = [1]
POL(true) = 0
(20) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(eq(0, 0)) → mark(true)
active(eq(s(z0), s(z1))) → mark(eq(z0, z1))
active(eq(z0, z1)) → mark(false)
active(inf(z0)) → mark(cons(z0, inf(s(z0))))
active(take(0, z0)) → mark(nil)
active(take(s(z0), cons(z1, z2))) → mark(cons(z1, take(z0, z2)))
active(length(nil)) → mark(0)
active(length(cons(z0, z1))) → mark(s(length(z1)))
active(inf(z0)) → inf(active(z0))
active(take(z0, z1)) → take(active(z0), z1)
active(take(z0, z1)) → take(z0, active(z1))
active(length(z0)) → length(active(z0))
inf(mark(z0)) → mark(inf(z0))
inf(ok(z0)) → ok(inf(z0))
take(mark(z0), z1) → mark(take(z0, z1))
take(z0, mark(z1)) → mark(take(z0, z1))
take(ok(z0), ok(z1)) → ok(take(z0, z1))
length(mark(z0)) → mark(length(z0))
length(ok(z0)) → ok(length(z0))
proper(eq(z0, z1)) → eq(proper(z0), proper(z1))
proper(0) → ok(0)
proper(true) → ok(true)
proper(s(z0)) → s(proper(z0))
proper(false) → ok(false)
proper(inf(z0)) → inf(proper(z0))
proper(cons(any(z0), z1)) → cons(any(any(proper(z0))), any(proper(z1)))
proper(take(z0, z1)) → take(proper(z0), proper(z1))
proper(nil) → ok(nil)
proper(length(z0)) → length(proper(z0))
eq(ok(z0), ok(z1)) → ok(eq(z0, z1))
s(ok(z0)) → ok(s(z0))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
any(z0) → s(z0)
any(proper(z0)) → any(any(any(z0)))
Tuples:
INF(mark(z0)) → c12(INF(z0))
INF(ok(z0)) → c13(INF(z0))
TAKE(mark(z0), z1) → c14(TAKE(z0, z1))
TAKE(z0, mark(z1)) → c15(TAKE(z0, z1))
TAKE(ok(z0), ok(z1)) → c16(TAKE(z0, z1))
LENGTH(mark(z0)) → c17(LENGTH(z0))
LENGTH(ok(z0)) → c18(LENGTH(z0))
EQ(ok(z0), ok(z1)) → c29(EQ(z0, z1))
S(ok(z0)) → c30(S(z0))
CONS(ok(z0), ok(z1)) → c31(CONS(z0, z1))
TOP(ok(z0)) → c33(TOP(active(z0)), ACTIVE(z0))
ACTIVE(eq(s(z0), s(z1))) → c1(EQ(z0, z1))
ACTIVE(inf(z0)) → c8(INF(active(z0)), ACTIVE(z0))
ACTIVE(take(z0, z1)) → c9(TAKE(active(z0), z1), ACTIVE(z0))
ACTIVE(take(z0, z1)) → c10(TAKE(z0, active(z1)), ACTIVE(z1))
ACTIVE(length(z0)) → c11(LENGTH(active(z0)), ACTIVE(z0))
PROPER(eq(z0, z1)) → c19(EQ(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c22(S(proper(z0)), PROPER(z0))
PROPER(inf(z0)) → c24(INF(proper(z0)), PROPER(z0))
PROPER(take(z0, z1)) → c26(TAKE(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(length(z0)) → c28(LENGTH(proper(z0)), PROPER(z0))
ACTIVE(inf(z0)) → c(S(z0))
ACTIVE(take(s(z0), cons(z1, z2))) → c(CONS(z1, take(z0, z2)))
ACTIVE(take(s(z0), cons(z1, z2))) → c(TAKE(z0, z2))
ACTIVE(length(cons(z0, z1))) → c(S(length(z1)))
ACTIVE(length(cons(z0, z1))) → c(LENGTH(z1))
TOP(mark(eq(z0, z1))) → c32(TOP(eq(proper(z0), proper(z1))), PROPER(eq(z0, z1)))
TOP(mark(s(z0))) → c32(TOP(s(proper(z0))), PROPER(s(z0)))
TOP(mark(inf(z0))) → c32(TOP(inf(proper(z0))), PROPER(inf(z0)))
TOP(mark(take(z0, z1))) → c32(TOP(take(proper(z0), proper(z1))), PROPER(take(z0, z1)))
TOP(mark(length(z0))) → c32(TOP(length(proper(z0))), PROPER(length(z0)))
TOP(mark(0)) → c32(TOP(ok(0)))
TOP(mark(true)) → c32(TOP(ok(true)))
TOP(mark(false)) → c32(TOP(ok(false)))
TOP(mark(nil)) → c32(TOP(ok(nil)))
S tuples:
ACTIVE(eq(s(z0), s(z1))) → c1(EQ(z0, z1))
ACTIVE(inf(z0)) → c8(INF(active(z0)), ACTIVE(z0))
ACTIVE(take(z0, z1)) → c9(TAKE(active(z0), z1), ACTIVE(z0))
ACTIVE(take(z0, z1)) → c10(TAKE(z0, active(z1)), ACTIVE(z1))
ACTIVE(length(z0)) → c11(LENGTH(active(z0)), ACTIVE(z0))
INF(mark(z0)) → c12(INF(z0))
INF(ok(z0)) → c13(INF(z0))
TAKE(mark(z0), z1) → c14(TAKE(z0, z1))
TAKE(z0, mark(z1)) → c15(TAKE(z0, z1))
TAKE(ok(z0), ok(z1)) → c16(TAKE(z0, z1))
LENGTH(mark(z0)) → c17(LENGTH(z0))
LENGTH(ok(z0)) → c18(LENGTH(z0))
PROPER(eq(z0, z1)) → c19(EQ(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c22(S(proper(z0)), PROPER(z0))
PROPER(inf(z0)) → c24(INF(proper(z0)), PROPER(z0))
PROPER(take(z0, z1)) → c26(TAKE(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(length(z0)) → c28(LENGTH(proper(z0)), PROPER(z0))
EQ(ok(z0), ok(z1)) → c29(EQ(z0, z1))
S(ok(z0)) → c30(S(z0))
TOP(ok(z0)) → c33(TOP(active(z0)), ACTIVE(z0))
ACTIVE(inf(z0)) → c(S(z0))
ACTIVE(take(s(z0), cons(z1, z2))) → c(CONS(z1, take(z0, z2)))
ACTIVE(take(s(z0), cons(z1, z2))) → c(TAKE(z0, z2))
ACTIVE(length(cons(z0, z1))) → c(S(length(z1)))
ACTIVE(length(cons(z0, z1))) → c(LENGTH(z1))
TOP(mark(eq(z0, z1))) → c32(TOP(eq(proper(z0), proper(z1))), PROPER(eq(z0, z1)))
TOP(mark(s(z0))) → c32(TOP(s(proper(z0))), PROPER(s(z0)))
TOP(mark(inf(z0))) → c32(TOP(inf(proper(z0))), PROPER(inf(z0)))
TOP(mark(take(z0, z1))) → c32(TOP(take(proper(z0), proper(z1))), PROPER(take(z0, z1)))
TOP(mark(length(z0))) → c32(TOP(length(proper(z0))), PROPER(length(z0)))
TOP(mark(0)) → c32(TOP(ok(0)))
TOP(mark(true)) → c32(TOP(ok(true)))
TOP(mark(nil)) → c32(TOP(ok(nil)))
K tuples:
CONS(ok(z0), ok(z1)) → c31(CONS(z0, z1))
TOP(mark(false)) → c32(TOP(ok(false)))
Defined Rule Symbols:
active, inf, take, length, proper, eq, s, cons, top, any
Defined Pair Symbols:
INF, TAKE, LENGTH, EQ, S, CONS, TOP, ACTIVE, PROPER
Compound Symbols:
c12, c13, c14, c15, c16, c17, c18, c29, c30, c31, c33, c1, c8, c9, c10, c11, c19, c22, c24, c26, c28, c, c32, c32
(21) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
TOP(mark(true)) → c32(TOP(ok(true)))
We considered the (Usable) Rules:
proper(eq(z0, z1)) → eq(proper(z0), proper(z1))
proper(0) → ok(0)
proper(true) → ok(true)
proper(s(z0)) → s(proper(z0))
proper(false) → ok(false)
proper(inf(z0)) → inf(proper(z0))
proper(take(z0, z1)) → take(proper(z0), proper(z1))
proper(nil) → ok(nil)
proper(length(z0)) → length(proper(z0))
length(mark(z0)) → mark(length(z0))
length(ok(z0)) → ok(length(z0))
take(mark(z0), z1) → mark(take(z0, z1))
take(z0, mark(z1)) → mark(take(z0, z1))
take(ok(z0), ok(z1)) → ok(take(z0, z1))
inf(mark(z0)) → mark(inf(z0))
inf(ok(z0)) → ok(inf(z0))
s(ok(z0)) → ok(s(z0))
eq(ok(z0), ok(z1)) → ok(eq(z0, z1))
active(eq(0, 0)) → mark(true)
active(eq(s(z0), s(z1))) → mark(eq(z0, z1))
active(eq(z0, z1)) → mark(false)
active(inf(z0)) → mark(cons(z0, inf(s(z0))))
active(take(0, z0)) → mark(nil)
active(take(s(z0), cons(z1, z2))) → mark(cons(z1, take(z0, z2)))
active(length(nil)) → mark(0)
active(length(cons(z0, z1))) → mark(s(length(z1)))
active(inf(z0)) → inf(active(z0))
active(take(z0, z1)) → take(active(z0), z1)
active(take(z0, z1)) → take(z0, active(z1))
active(length(z0)) → length(active(z0))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
And the Tuples:
INF(mark(z0)) → c12(INF(z0))
INF(ok(z0)) → c13(INF(z0))
TAKE(mark(z0), z1) → c14(TAKE(z0, z1))
TAKE(z0, mark(z1)) → c15(TAKE(z0, z1))
TAKE(ok(z0), ok(z1)) → c16(TAKE(z0, z1))
LENGTH(mark(z0)) → c17(LENGTH(z0))
LENGTH(ok(z0)) → c18(LENGTH(z0))
EQ(ok(z0), ok(z1)) → c29(EQ(z0, z1))
S(ok(z0)) → c30(S(z0))
CONS(ok(z0), ok(z1)) → c31(CONS(z0, z1))
TOP(ok(z0)) → c33(TOP(active(z0)), ACTIVE(z0))
ACTIVE(eq(s(z0), s(z1))) → c1(EQ(z0, z1))
ACTIVE(inf(z0)) → c8(INF(active(z0)), ACTIVE(z0))
ACTIVE(take(z0, z1)) → c9(TAKE(active(z0), z1), ACTIVE(z0))
ACTIVE(take(z0, z1)) → c10(TAKE(z0, active(z1)), ACTIVE(z1))
ACTIVE(length(z0)) → c11(LENGTH(active(z0)), ACTIVE(z0))
PROPER(eq(z0, z1)) → c19(EQ(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c22(S(proper(z0)), PROPER(z0))
PROPER(inf(z0)) → c24(INF(proper(z0)), PROPER(z0))
PROPER(take(z0, z1)) → c26(TAKE(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(length(z0)) → c28(LENGTH(proper(z0)), PROPER(z0))
ACTIVE(inf(z0)) → c(S(z0))
ACTIVE(take(s(z0), cons(z1, z2))) → c(CONS(z1, take(z0, z2)))
ACTIVE(take(s(z0), cons(z1, z2))) → c(TAKE(z0, z2))
ACTIVE(length(cons(z0, z1))) → c(S(length(z1)))
ACTIVE(length(cons(z0, z1))) → c(LENGTH(z1))
TOP(mark(eq(z0, z1))) → c32(TOP(eq(proper(z0), proper(z1))), PROPER(eq(z0, z1)))
TOP(mark(s(z0))) → c32(TOP(s(proper(z0))), PROPER(s(z0)))
TOP(mark(inf(z0))) → c32(TOP(inf(proper(z0))), PROPER(inf(z0)))
TOP(mark(take(z0, z1))) → c32(TOP(take(proper(z0), proper(z1))), PROPER(take(z0, z1)))
TOP(mark(length(z0))) → c32(TOP(length(proper(z0))), PROPER(length(z0)))
TOP(mark(0)) → c32(TOP(ok(0)))
TOP(mark(true)) → c32(TOP(ok(true)))
TOP(mark(false)) → c32(TOP(ok(false)))
TOP(mark(nil)) → c32(TOP(ok(nil)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(ACTIVE(x1)) = 0
POL(CONS(x1, x2)) = 0
POL(EQ(x1, x2)) = 0
POL(INF(x1)) = 0
POL(LENGTH(x1)) = 0
POL(PROPER(x1)) = 0
POL(S(x1)) = 0
POL(TAKE(x1, x2)) = 0
POL(TOP(x1)) = [2]x1
POL(active(x1)) = x1
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c10(x1, x2)) = x1 + x2
POL(c11(x1, x2)) = x1 + x2
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c14(x1)) = x1
POL(c15(x1)) = x1
POL(c16(x1)) = x1
POL(c17(x1)) = x1
POL(c18(x1)) = x1
POL(c19(x1, x2, x3)) = x1 + x2 + x3
POL(c22(x1, x2)) = x1 + x2
POL(c24(x1, x2)) = x1 + x2
POL(c26(x1, x2, x3)) = x1 + x2 + x3
POL(c28(x1, x2)) = x1 + x2
POL(c29(x1)) = x1
POL(c30(x1)) = x1
POL(c31(x1)) = x1
POL(c32(x1)) = x1
POL(c32(x1, x2)) = x1 + x2
POL(c33(x1, x2)) = x1 + x2
POL(c8(x1, x2)) = x1 + x2
POL(c9(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = [2] + [5]x1 + x2
POL(eq(x1, x2)) = [1]
POL(false) = 0
POL(inf(x1)) = [1]
POL(length(x1)) = x1
POL(mark(x1)) = [1]
POL(nil) = [1]
POL(ok(x1)) = x1
POL(proper(x1)) = [1]
POL(s(x1)) = 0
POL(take(x1, x2)) = [1]
POL(true) = 0
(22) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(eq(0, 0)) → mark(true)
active(eq(s(z0), s(z1))) → mark(eq(z0, z1))
active(eq(z0, z1)) → mark(false)
active(inf(z0)) → mark(cons(z0, inf(s(z0))))
active(take(0, z0)) → mark(nil)
active(take(s(z0), cons(z1, z2))) → mark(cons(z1, take(z0, z2)))
active(length(nil)) → mark(0)
active(length(cons(z0, z1))) → mark(s(length(z1)))
active(inf(z0)) → inf(active(z0))
active(take(z0, z1)) → take(active(z0), z1)
active(take(z0, z1)) → take(z0, active(z1))
active(length(z0)) → length(active(z0))
inf(mark(z0)) → mark(inf(z0))
inf(ok(z0)) → ok(inf(z0))
take(mark(z0), z1) → mark(take(z0, z1))
take(z0, mark(z1)) → mark(take(z0, z1))
take(ok(z0), ok(z1)) → ok(take(z0, z1))
length(mark(z0)) → mark(length(z0))
length(ok(z0)) → ok(length(z0))
proper(eq(z0, z1)) → eq(proper(z0), proper(z1))
proper(0) → ok(0)
proper(true) → ok(true)
proper(s(z0)) → s(proper(z0))
proper(false) → ok(false)
proper(inf(z0)) → inf(proper(z0))
proper(cons(any(z0), z1)) → cons(any(any(proper(z0))), any(proper(z1)))
proper(take(z0, z1)) → take(proper(z0), proper(z1))
proper(nil) → ok(nil)
proper(length(z0)) → length(proper(z0))
eq(ok(z0), ok(z1)) → ok(eq(z0, z1))
s(ok(z0)) → ok(s(z0))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
any(z0) → s(z0)
any(proper(z0)) → any(any(any(z0)))
Tuples:
INF(mark(z0)) → c12(INF(z0))
INF(ok(z0)) → c13(INF(z0))
TAKE(mark(z0), z1) → c14(TAKE(z0, z1))
TAKE(z0, mark(z1)) → c15(TAKE(z0, z1))
TAKE(ok(z0), ok(z1)) → c16(TAKE(z0, z1))
LENGTH(mark(z0)) → c17(LENGTH(z0))
LENGTH(ok(z0)) → c18(LENGTH(z0))
EQ(ok(z0), ok(z1)) → c29(EQ(z0, z1))
S(ok(z0)) → c30(S(z0))
CONS(ok(z0), ok(z1)) → c31(CONS(z0, z1))
TOP(ok(z0)) → c33(TOP(active(z0)), ACTIVE(z0))
ACTIVE(eq(s(z0), s(z1))) → c1(EQ(z0, z1))
ACTIVE(inf(z0)) → c8(INF(active(z0)), ACTIVE(z0))
ACTIVE(take(z0, z1)) → c9(TAKE(active(z0), z1), ACTIVE(z0))
ACTIVE(take(z0, z1)) → c10(TAKE(z0, active(z1)), ACTIVE(z1))
ACTIVE(length(z0)) → c11(LENGTH(active(z0)), ACTIVE(z0))
PROPER(eq(z0, z1)) → c19(EQ(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c22(S(proper(z0)), PROPER(z0))
PROPER(inf(z0)) → c24(INF(proper(z0)), PROPER(z0))
PROPER(take(z0, z1)) → c26(TAKE(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(length(z0)) → c28(LENGTH(proper(z0)), PROPER(z0))
ACTIVE(inf(z0)) → c(S(z0))
ACTIVE(take(s(z0), cons(z1, z2))) → c(CONS(z1, take(z0, z2)))
ACTIVE(take(s(z0), cons(z1, z2))) → c(TAKE(z0, z2))
ACTIVE(length(cons(z0, z1))) → c(S(length(z1)))
ACTIVE(length(cons(z0, z1))) → c(LENGTH(z1))
TOP(mark(eq(z0, z1))) → c32(TOP(eq(proper(z0), proper(z1))), PROPER(eq(z0, z1)))
TOP(mark(s(z0))) → c32(TOP(s(proper(z0))), PROPER(s(z0)))
TOP(mark(inf(z0))) → c32(TOP(inf(proper(z0))), PROPER(inf(z0)))
TOP(mark(take(z0, z1))) → c32(TOP(take(proper(z0), proper(z1))), PROPER(take(z0, z1)))
TOP(mark(length(z0))) → c32(TOP(length(proper(z0))), PROPER(length(z0)))
TOP(mark(0)) → c32(TOP(ok(0)))
TOP(mark(true)) → c32(TOP(ok(true)))
TOP(mark(false)) → c32(TOP(ok(false)))
TOP(mark(nil)) → c32(TOP(ok(nil)))
S tuples:
ACTIVE(eq(s(z0), s(z1))) → c1(EQ(z0, z1))
ACTIVE(inf(z0)) → c8(INF(active(z0)), ACTIVE(z0))
ACTIVE(take(z0, z1)) → c9(TAKE(active(z0), z1), ACTIVE(z0))
ACTIVE(take(z0, z1)) → c10(TAKE(z0, active(z1)), ACTIVE(z1))
ACTIVE(length(z0)) → c11(LENGTH(active(z0)), ACTIVE(z0))
INF(mark(z0)) → c12(INF(z0))
INF(ok(z0)) → c13(INF(z0))
TAKE(mark(z0), z1) → c14(TAKE(z0, z1))
TAKE(z0, mark(z1)) → c15(TAKE(z0, z1))
TAKE(ok(z0), ok(z1)) → c16(TAKE(z0, z1))
LENGTH(mark(z0)) → c17(LENGTH(z0))
LENGTH(ok(z0)) → c18(LENGTH(z0))
PROPER(eq(z0, z1)) → c19(EQ(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c22(S(proper(z0)), PROPER(z0))
PROPER(inf(z0)) → c24(INF(proper(z0)), PROPER(z0))
PROPER(take(z0, z1)) → c26(TAKE(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(length(z0)) → c28(LENGTH(proper(z0)), PROPER(z0))
EQ(ok(z0), ok(z1)) → c29(EQ(z0, z1))
S(ok(z0)) → c30(S(z0))
TOP(ok(z0)) → c33(TOP(active(z0)), ACTIVE(z0))
ACTIVE(inf(z0)) → c(S(z0))
ACTIVE(take(s(z0), cons(z1, z2))) → c(CONS(z1, take(z0, z2)))
ACTIVE(take(s(z0), cons(z1, z2))) → c(TAKE(z0, z2))
ACTIVE(length(cons(z0, z1))) → c(S(length(z1)))
ACTIVE(length(cons(z0, z1))) → c(LENGTH(z1))
TOP(mark(eq(z0, z1))) → c32(TOP(eq(proper(z0), proper(z1))), PROPER(eq(z0, z1)))
TOP(mark(s(z0))) → c32(TOP(s(proper(z0))), PROPER(s(z0)))
TOP(mark(inf(z0))) → c32(TOP(inf(proper(z0))), PROPER(inf(z0)))
TOP(mark(take(z0, z1))) → c32(TOP(take(proper(z0), proper(z1))), PROPER(take(z0, z1)))
TOP(mark(length(z0))) → c32(TOP(length(proper(z0))), PROPER(length(z0)))
TOP(mark(0)) → c32(TOP(ok(0)))
TOP(mark(nil)) → c32(TOP(ok(nil)))
K tuples:
CONS(ok(z0), ok(z1)) → c31(CONS(z0, z1))
TOP(mark(false)) → c32(TOP(ok(false)))
TOP(mark(true)) → c32(TOP(ok(true)))
Defined Rule Symbols:
active, inf, take, length, proper, eq, s, cons, top, any
Defined Pair Symbols:
INF, TAKE, LENGTH, EQ, S, CONS, TOP, ACTIVE, PROPER
Compound Symbols:
c12, c13, c14, c15, c16, c17, c18, c29, c30, c31, c33, c1, c8, c9, c10, c11, c19, c22, c24, c26, c28, c, c32, c32
(23) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
TOP(mark(s(z0))) → c32(TOP(s(proper(z0))), PROPER(s(z0)))
We considered the (Usable) Rules:
proper(eq(z0, z1)) → eq(proper(z0), proper(z1))
proper(0) → ok(0)
proper(true) → ok(true)
proper(s(z0)) → s(proper(z0))
proper(false) → ok(false)
proper(inf(z0)) → inf(proper(z0))
proper(take(z0, z1)) → take(proper(z0), proper(z1))
proper(nil) → ok(nil)
proper(length(z0)) → length(proper(z0))
length(mark(z0)) → mark(length(z0))
length(ok(z0)) → ok(length(z0))
take(mark(z0), z1) → mark(take(z0, z1))
take(z0, mark(z1)) → mark(take(z0, z1))
take(ok(z0), ok(z1)) → ok(take(z0, z1))
inf(mark(z0)) → mark(inf(z0))
inf(ok(z0)) → ok(inf(z0))
s(ok(z0)) → ok(s(z0))
eq(ok(z0), ok(z1)) → ok(eq(z0, z1))
active(eq(0, 0)) → mark(true)
active(eq(s(z0), s(z1))) → mark(eq(z0, z1))
active(eq(z0, z1)) → mark(false)
active(inf(z0)) → mark(cons(z0, inf(s(z0))))
active(take(0, z0)) → mark(nil)
active(take(s(z0), cons(z1, z2))) → mark(cons(z1, take(z0, z2)))
active(length(nil)) → mark(0)
active(length(cons(z0, z1))) → mark(s(length(z1)))
active(inf(z0)) → inf(active(z0))
active(take(z0, z1)) → take(active(z0), z1)
active(take(z0, z1)) → take(z0, active(z1))
active(length(z0)) → length(active(z0))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
And the Tuples:
INF(mark(z0)) → c12(INF(z0))
INF(ok(z0)) → c13(INF(z0))
TAKE(mark(z0), z1) → c14(TAKE(z0, z1))
TAKE(z0, mark(z1)) → c15(TAKE(z0, z1))
TAKE(ok(z0), ok(z1)) → c16(TAKE(z0, z1))
LENGTH(mark(z0)) → c17(LENGTH(z0))
LENGTH(ok(z0)) → c18(LENGTH(z0))
EQ(ok(z0), ok(z1)) → c29(EQ(z0, z1))
S(ok(z0)) → c30(S(z0))
CONS(ok(z0), ok(z1)) → c31(CONS(z0, z1))
TOP(ok(z0)) → c33(TOP(active(z0)), ACTIVE(z0))
ACTIVE(eq(s(z0), s(z1))) → c1(EQ(z0, z1))
ACTIVE(inf(z0)) → c8(INF(active(z0)), ACTIVE(z0))
ACTIVE(take(z0, z1)) → c9(TAKE(active(z0), z1), ACTIVE(z0))
ACTIVE(take(z0, z1)) → c10(TAKE(z0, active(z1)), ACTIVE(z1))
ACTIVE(length(z0)) → c11(LENGTH(active(z0)), ACTIVE(z0))
PROPER(eq(z0, z1)) → c19(EQ(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c22(S(proper(z0)), PROPER(z0))
PROPER(inf(z0)) → c24(INF(proper(z0)), PROPER(z0))
PROPER(take(z0, z1)) → c26(TAKE(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(length(z0)) → c28(LENGTH(proper(z0)), PROPER(z0))
ACTIVE(inf(z0)) → c(S(z0))
ACTIVE(take(s(z0), cons(z1, z2))) → c(CONS(z1, take(z0, z2)))
ACTIVE(take(s(z0), cons(z1, z2))) → c(TAKE(z0, z2))
ACTIVE(length(cons(z0, z1))) → c(S(length(z1)))
ACTIVE(length(cons(z0, z1))) → c(LENGTH(z1))
TOP(mark(eq(z0, z1))) → c32(TOP(eq(proper(z0), proper(z1))), PROPER(eq(z0, z1)))
TOP(mark(s(z0))) → c32(TOP(s(proper(z0))), PROPER(s(z0)))
TOP(mark(inf(z0))) → c32(TOP(inf(proper(z0))), PROPER(inf(z0)))
TOP(mark(take(z0, z1))) → c32(TOP(take(proper(z0), proper(z1))), PROPER(take(z0, z1)))
TOP(mark(length(z0))) → c32(TOP(length(proper(z0))), PROPER(length(z0)))
TOP(mark(0)) → c32(TOP(ok(0)))
TOP(mark(true)) → c32(TOP(ok(true)))
TOP(mark(false)) → c32(TOP(ok(false)))
TOP(mark(nil)) → c32(TOP(ok(nil)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(ACTIVE(x1)) = 0
POL(CONS(x1, x2)) = 0
POL(EQ(x1, x2)) = 0
POL(INF(x1)) = 0
POL(LENGTH(x1)) = 0
POL(PROPER(x1)) = 0
POL(S(x1)) = 0
POL(TAKE(x1, x2)) = 0
POL(TOP(x1)) = x1
POL(active(x1)) = x1
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c10(x1, x2)) = x1 + x2
POL(c11(x1, x2)) = x1 + x2
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c14(x1)) = x1
POL(c15(x1)) = x1
POL(c16(x1)) = x1
POL(c17(x1)) = x1
POL(c18(x1)) = x1
POL(c19(x1, x2, x3)) = x1 + x2 + x3
POL(c22(x1, x2)) = x1 + x2
POL(c24(x1, x2)) = x1 + x2
POL(c26(x1, x2, x3)) = x1 + x2 + x3
POL(c28(x1, x2)) = x1 + x2
POL(c29(x1)) = x1
POL(c30(x1)) = x1
POL(c31(x1)) = x1
POL(c32(x1)) = x1
POL(c32(x1, x2)) = x1 + x2
POL(c33(x1, x2)) = x1 + x2
POL(c8(x1, x2)) = x1 + x2
POL(c9(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = [4] + [3]x1 + [3]x2
POL(eq(x1, x2)) = [1]
POL(false) = [1]
POL(inf(x1)) = [1]
POL(length(x1)) = x1
POL(mark(x1)) = [1]
POL(nil) = [1]
POL(ok(x1)) = x1
POL(proper(x1)) = [1]
POL(s(x1)) = 0
POL(take(x1, x2)) = [1]
POL(true) = [1]
(24) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(eq(0, 0)) → mark(true)
active(eq(s(z0), s(z1))) → mark(eq(z0, z1))
active(eq(z0, z1)) → mark(false)
active(inf(z0)) → mark(cons(z0, inf(s(z0))))
active(take(0, z0)) → mark(nil)
active(take(s(z0), cons(z1, z2))) → mark(cons(z1, take(z0, z2)))
active(length(nil)) → mark(0)
active(length(cons(z0, z1))) → mark(s(length(z1)))
active(inf(z0)) → inf(active(z0))
active(take(z0, z1)) → take(active(z0), z1)
active(take(z0, z1)) → take(z0, active(z1))
active(length(z0)) → length(active(z0))
inf(mark(z0)) → mark(inf(z0))
inf(ok(z0)) → ok(inf(z0))
take(mark(z0), z1) → mark(take(z0, z1))
take(z0, mark(z1)) → mark(take(z0, z1))
take(ok(z0), ok(z1)) → ok(take(z0, z1))
length(mark(z0)) → mark(length(z0))
length(ok(z0)) → ok(length(z0))
proper(eq(z0, z1)) → eq(proper(z0), proper(z1))
proper(0) → ok(0)
proper(true) → ok(true)
proper(s(z0)) → s(proper(z0))
proper(false) → ok(false)
proper(inf(z0)) → inf(proper(z0))
proper(cons(any(z0), z1)) → cons(any(any(proper(z0))), any(proper(z1)))
proper(take(z0, z1)) → take(proper(z0), proper(z1))
proper(nil) → ok(nil)
proper(length(z0)) → length(proper(z0))
eq(ok(z0), ok(z1)) → ok(eq(z0, z1))
s(ok(z0)) → ok(s(z0))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
any(z0) → s(z0)
any(proper(z0)) → any(any(any(z0)))
Tuples:
INF(mark(z0)) → c12(INF(z0))
INF(ok(z0)) → c13(INF(z0))
TAKE(mark(z0), z1) → c14(TAKE(z0, z1))
TAKE(z0, mark(z1)) → c15(TAKE(z0, z1))
TAKE(ok(z0), ok(z1)) → c16(TAKE(z0, z1))
LENGTH(mark(z0)) → c17(LENGTH(z0))
LENGTH(ok(z0)) → c18(LENGTH(z0))
EQ(ok(z0), ok(z1)) → c29(EQ(z0, z1))
S(ok(z0)) → c30(S(z0))
CONS(ok(z0), ok(z1)) → c31(CONS(z0, z1))
TOP(ok(z0)) → c33(TOP(active(z0)), ACTIVE(z0))
ACTIVE(eq(s(z0), s(z1))) → c1(EQ(z0, z1))
ACTIVE(inf(z0)) → c8(INF(active(z0)), ACTIVE(z0))
ACTIVE(take(z0, z1)) → c9(TAKE(active(z0), z1), ACTIVE(z0))
ACTIVE(take(z0, z1)) → c10(TAKE(z0, active(z1)), ACTIVE(z1))
ACTIVE(length(z0)) → c11(LENGTH(active(z0)), ACTIVE(z0))
PROPER(eq(z0, z1)) → c19(EQ(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c22(S(proper(z0)), PROPER(z0))
PROPER(inf(z0)) → c24(INF(proper(z0)), PROPER(z0))
PROPER(take(z0, z1)) → c26(TAKE(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(length(z0)) → c28(LENGTH(proper(z0)), PROPER(z0))
ACTIVE(inf(z0)) → c(S(z0))
ACTIVE(take(s(z0), cons(z1, z2))) → c(CONS(z1, take(z0, z2)))
ACTIVE(take(s(z0), cons(z1, z2))) → c(TAKE(z0, z2))
ACTIVE(length(cons(z0, z1))) → c(S(length(z1)))
ACTIVE(length(cons(z0, z1))) → c(LENGTH(z1))
TOP(mark(eq(z0, z1))) → c32(TOP(eq(proper(z0), proper(z1))), PROPER(eq(z0, z1)))
TOP(mark(s(z0))) → c32(TOP(s(proper(z0))), PROPER(s(z0)))
TOP(mark(inf(z0))) → c32(TOP(inf(proper(z0))), PROPER(inf(z0)))
TOP(mark(take(z0, z1))) → c32(TOP(take(proper(z0), proper(z1))), PROPER(take(z0, z1)))
TOP(mark(length(z0))) → c32(TOP(length(proper(z0))), PROPER(length(z0)))
TOP(mark(0)) → c32(TOP(ok(0)))
TOP(mark(true)) → c32(TOP(ok(true)))
TOP(mark(false)) → c32(TOP(ok(false)))
TOP(mark(nil)) → c32(TOP(ok(nil)))
S tuples:
ACTIVE(eq(s(z0), s(z1))) → c1(EQ(z0, z1))
ACTIVE(inf(z0)) → c8(INF(active(z0)), ACTIVE(z0))
ACTIVE(take(z0, z1)) → c9(TAKE(active(z0), z1), ACTIVE(z0))
ACTIVE(take(z0, z1)) → c10(TAKE(z0, active(z1)), ACTIVE(z1))
ACTIVE(length(z0)) → c11(LENGTH(active(z0)), ACTIVE(z0))
INF(mark(z0)) → c12(INF(z0))
INF(ok(z0)) → c13(INF(z0))
TAKE(mark(z0), z1) → c14(TAKE(z0, z1))
TAKE(z0, mark(z1)) → c15(TAKE(z0, z1))
TAKE(ok(z0), ok(z1)) → c16(TAKE(z0, z1))
LENGTH(mark(z0)) → c17(LENGTH(z0))
LENGTH(ok(z0)) → c18(LENGTH(z0))
PROPER(eq(z0, z1)) → c19(EQ(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c22(S(proper(z0)), PROPER(z0))
PROPER(inf(z0)) → c24(INF(proper(z0)), PROPER(z0))
PROPER(take(z0, z1)) → c26(TAKE(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(length(z0)) → c28(LENGTH(proper(z0)), PROPER(z0))
EQ(ok(z0), ok(z1)) → c29(EQ(z0, z1))
S(ok(z0)) → c30(S(z0))
TOP(ok(z0)) → c33(TOP(active(z0)), ACTIVE(z0))
ACTIVE(inf(z0)) → c(S(z0))
ACTIVE(take(s(z0), cons(z1, z2))) → c(CONS(z1, take(z0, z2)))
ACTIVE(take(s(z0), cons(z1, z2))) → c(TAKE(z0, z2))
ACTIVE(length(cons(z0, z1))) → c(S(length(z1)))
ACTIVE(length(cons(z0, z1))) → c(LENGTH(z1))
TOP(mark(eq(z0, z1))) → c32(TOP(eq(proper(z0), proper(z1))), PROPER(eq(z0, z1)))
TOP(mark(inf(z0))) → c32(TOP(inf(proper(z0))), PROPER(inf(z0)))
TOP(mark(take(z0, z1))) → c32(TOP(take(proper(z0), proper(z1))), PROPER(take(z0, z1)))
TOP(mark(length(z0))) → c32(TOP(length(proper(z0))), PROPER(length(z0)))
TOP(mark(0)) → c32(TOP(ok(0)))
TOP(mark(nil)) → c32(TOP(ok(nil)))
K tuples:
CONS(ok(z0), ok(z1)) → c31(CONS(z0, z1))
TOP(mark(false)) → c32(TOP(ok(false)))
TOP(mark(true)) → c32(TOP(ok(true)))
TOP(mark(s(z0))) → c32(TOP(s(proper(z0))), PROPER(s(z0)))
Defined Rule Symbols:
active, inf, take, length, proper, eq, s, cons, top, any
Defined Pair Symbols:
INF, TAKE, LENGTH, EQ, S, CONS, TOP, ACTIVE, PROPER
Compound Symbols:
c12, c13, c14, c15, c16, c17, c18, c29, c30, c31, c33, c1, c8, c9, c10, c11, c19, c22, c24, c26, c28, c, c32, c32
(25) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
TOP(mark(0)) → c32(TOP(ok(0)))
We considered the (Usable) Rules:
proper(eq(z0, z1)) → eq(proper(z0), proper(z1))
proper(0) → ok(0)
proper(true) → ok(true)
proper(s(z0)) → s(proper(z0))
proper(false) → ok(false)
proper(inf(z0)) → inf(proper(z0))
proper(take(z0, z1)) → take(proper(z0), proper(z1))
proper(nil) → ok(nil)
proper(length(z0)) → length(proper(z0))
length(mark(z0)) → mark(length(z0))
length(ok(z0)) → ok(length(z0))
take(mark(z0), z1) → mark(take(z0, z1))
take(z0, mark(z1)) → mark(take(z0, z1))
take(ok(z0), ok(z1)) → ok(take(z0, z1))
inf(mark(z0)) → mark(inf(z0))
inf(ok(z0)) → ok(inf(z0))
s(ok(z0)) → ok(s(z0))
eq(ok(z0), ok(z1)) → ok(eq(z0, z1))
active(eq(0, 0)) → mark(true)
active(eq(s(z0), s(z1))) → mark(eq(z0, z1))
active(eq(z0, z1)) → mark(false)
active(inf(z0)) → mark(cons(z0, inf(s(z0))))
active(take(0, z0)) → mark(nil)
active(take(s(z0), cons(z1, z2))) → mark(cons(z1, take(z0, z2)))
active(length(nil)) → mark(0)
active(length(cons(z0, z1))) → mark(s(length(z1)))
active(inf(z0)) → inf(active(z0))
active(take(z0, z1)) → take(active(z0), z1)
active(take(z0, z1)) → take(z0, active(z1))
active(length(z0)) → length(active(z0))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
And the Tuples:
INF(mark(z0)) → c12(INF(z0))
INF(ok(z0)) → c13(INF(z0))
TAKE(mark(z0), z1) → c14(TAKE(z0, z1))
TAKE(z0, mark(z1)) → c15(TAKE(z0, z1))
TAKE(ok(z0), ok(z1)) → c16(TAKE(z0, z1))
LENGTH(mark(z0)) → c17(LENGTH(z0))
LENGTH(ok(z0)) → c18(LENGTH(z0))
EQ(ok(z0), ok(z1)) → c29(EQ(z0, z1))
S(ok(z0)) → c30(S(z0))
CONS(ok(z0), ok(z1)) → c31(CONS(z0, z1))
TOP(ok(z0)) → c33(TOP(active(z0)), ACTIVE(z0))
ACTIVE(eq(s(z0), s(z1))) → c1(EQ(z0, z1))
ACTIVE(inf(z0)) → c8(INF(active(z0)), ACTIVE(z0))
ACTIVE(take(z0, z1)) → c9(TAKE(active(z0), z1), ACTIVE(z0))
ACTIVE(take(z0, z1)) → c10(TAKE(z0, active(z1)), ACTIVE(z1))
ACTIVE(length(z0)) → c11(LENGTH(active(z0)), ACTIVE(z0))
PROPER(eq(z0, z1)) → c19(EQ(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c22(S(proper(z0)), PROPER(z0))
PROPER(inf(z0)) → c24(INF(proper(z0)), PROPER(z0))
PROPER(take(z0, z1)) → c26(TAKE(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(length(z0)) → c28(LENGTH(proper(z0)), PROPER(z0))
ACTIVE(inf(z0)) → c(S(z0))
ACTIVE(take(s(z0), cons(z1, z2))) → c(CONS(z1, take(z0, z2)))
ACTIVE(take(s(z0), cons(z1, z2))) → c(TAKE(z0, z2))
ACTIVE(length(cons(z0, z1))) → c(S(length(z1)))
ACTIVE(length(cons(z0, z1))) → c(LENGTH(z1))
TOP(mark(eq(z0, z1))) → c32(TOP(eq(proper(z0), proper(z1))), PROPER(eq(z0, z1)))
TOP(mark(s(z0))) → c32(TOP(s(proper(z0))), PROPER(s(z0)))
TOP(mark(inf(z0))) → c32(TOP(inf(proper(z0))), PROPER(inf(z0)))
TOP(mark(take(z0, z1))) → c32(TOP(take(proper(z0), proper(z1))), PROPER(take(z0, z1)))
TOP(mark(length(z0))) → c32(TOP(length(proper(z0))), PROPER(length(z0)))
TOP(mark(0)) → c32(TOP(ok(0)))
TOP(mark(true)) → c32(TOP(ok(true)))
TOP(mark(false)) → c32(TOP(ok(false)))
TOP(mark(nil)) → c32(TOP(ok(nil)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(ACTIVE(x1)) = 0
POL(CONS(x1, x2)) = 0
POL(EQ(x1, x2)) = 0
POL(INF(x1)) = 0
POL(LENGTH(x1)) = 0
POL(PROPER(x1)) = 0
POL(S(x1)) = 0
POL(TAKE(x1, x2)) = 0
POL(TOP(x1)) = [2]x1
POL(active(x1)) = x1
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c10(x1, x2)) = x1 + x2
POL(c11(x1, x2)) = x1 + x2
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c14(x1)) = x1
POL(c15(x1)) = x1
POL(c16(x1)) = x1
POL(c17(x1)) = x1
POL(c18(x1)) = x1
POL(c19(x1, x2, x3)) = x1 + x2 + x3
POL(c22(x1, x2)) = x1 + x2
POL(c24(x1, x2)) = x1 + x2
POL(c26(x1, x2, x3)) = x1 + x2 + x3
POL(c28(x1, x2)) = x1 + x2
POL(c29(x1)) = x1
POL(c30(x1)) = x1
POL(c31(x1)) = x1
POL(c32(x1)) = x1
POL(c32(x1, x2)) = x1 + x2
POL(c33(x1, x2)) = x1 + x2
POL(c8(x1, x2)) = x1 + x2
POL(c9(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = [4]x1
POL(eq(x1, x2)) = [1]
POL(false) = 0
POL(inf(x1)) = [1]
POL(length(x1)) = [1]
POL(mark(x1)) = [1]
POL(nil) = 0
POL(ok(x1)) = x1
POL(proper(x1)) = 0
POL(s(x1)) = 0
POL(take(x1, x2)) = [1]
POL(true) = 0
(26) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(eq(0, 0)) → mark(true)
active(eq(s(z0), s(z1))) → mark(eq(z0, z1))
active(eq(z0, z1)) → mark(false)
active(inf(z0)) → mark(cons(z0, inf(s(z0))))
active(take(0, z0)) → mark(nil)
active(take(s(z0), cons(z1, z2))) → mark(cons(z1, take(z0, z2)))
active(length(nil)) → mark(0)
active(length(cons(z0, z1))) → mark(s(length(z1)))
active(inf(z0)) → inf(active(z0))
active(take(z0, z1)) → take(active(z0), z1)
active(take(z0, z1)) → take(z0, active(z1))
active(length(z0)) → length(active(z0))
inf(mark(z0)) → mark(inf(z0))
inf(ok(z0)) → ok(inf(z0))
take(mark(z0), z1) → mark(take(z0, z1))
take(z0, mark(z1)) → mark(take(z0, z1))
take(ok(z0), ok(z1)) → ok(take(z0, z1))
length(mark(z0)) → mark(length(z0))
length(ok(z0)) → ok(length(z0))
proper(eq(z0, z1)) → eq(proper(z0), proper(z1))
proper(0) → ok(0)
proper(true) → ok(true)
proper(s(z0)) → s(proper(z0))
proper(false) → ok(false)
proper(inf(z0)) → inf(proper(z0))
proper(cons(any(z0), z1)) → cons(any(any(proper(z0))), any(proper(z1)))
proper(take(z0, z1)) → take(proper(z0), proper(z1))
proper(nil) → ok(nil)
proper(length(z0)) → length(proper(z0))
eq(ok(z0), ok(z1)) → ok(eq(z0, z1))
s(ok(z0)) → ok(s(z0))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
any(z0) → s(z0)
any(proper(z0)) → any(any(any(z0)))
Tuples:
INF(mark(z0)) → c12(INF(z0))
INF(ok(z0)) → c13(INF(z0))
TAKE(mark(z0), z1) → c14(TAKE(z0, z1))
TAKE(z0, mark(z1)) → c15(TAKE(z0, z1))
TAKE(ok(z0), ok(z1)) → c16(TAKE(z0, z1))
LENGTH(mark(z0)) → c17(LENGTH(z0))
LENGTH(ok(z0)) → c18(LENGTH(z0))
EQ(ok(z0), ok(z1)) → c29(EQ(z0, z1))
S(ok(z0)) → c30(S(z0))
CONS(ok(z0), ok(z1)) → c31(CONS(z0, z1))
TOP(ok(z0)) → c33(TOP(active(z0)), ACTIVE(z0))
ACTIVE(eq(s(z0), s(z1))) → c1(EQ(z0, z1))
ACTIVE(inf(z0)) → c8(INF(active(z0)), ACTIVE(z0))
ACTIVE(take(z0, z1)) → c9(TAKE(active(z0), z1), ACTIVE(z0))
ACTIVE(take(z0, z1)) → c10(TAKE(z0, active(z1)), ACTIVE(z1))
ACTIVE(length(z0)) → c11(LENGTH(active(z0)), ACTIVE(z0))
PROPER(eq(z0, z1)) → c19(EQ(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c22(S(proper(z0)), PROPER(z0))
PROPER(inf(z0)) → c24(INF(proper(z0)), PROPER(z0))
PROPER(take(z0, z1)) → c26(TAKE(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(length(z0)) → c28(LENGTH(proper(z0)), PROPER(z0))
ACTIVE(inf(z0)) → c(S(z0))
ACTIVE(take(s(z0), cons(z1, z2))) → c(CONS(z1, take(z0, z2)))
ACTIVE(take(s(z0), cons(z1, z2))) → c(TAKE(z0, z2))
ACTIVE(length(cons(z0, z1))) → c(S(length(z1)))
ACTIVE(length(cons(z0, z1))) → c(LENGTH(z1))
TOP(mark(eq(z0, z1))) → c32(TOP(eq(proper(z0), proper(z1))), PROPER(eq(z0, z1)))
TOP(mark(s(z0))) → c32(TOP(s(proper(z0))), PROPER(s(z0)))
TOP(mark(inf(z0))) → c32(TOP(inf(proper(z0))), PROPER(inf(z0)))
TOP(mark(take(z0, z1))) → c32(TOP(take(proper(z0), proper(z1))), PROPER(take(z0, z1)))
TOP(mark(length(z0))) → c32(TOP(length(proper(z0))), PROPER(length(z0)))
TOP(mark(0)) → c32(TOP(ok(0)))
TOP(mark(true)) → c32(TOP(ok(true)))
TOP(mark(false)) → c32(TOP(ok(false)))
TOP(mark(nil)) → c32(TOP(ok(nil)))
S tuples:
ACTIVE(eq(s(z0), s(z1))) → c1(EQ(z0, z1))
ACTIVE(inf(z0)) → c8(INF(active(z0)), ACTIVE(z0))
ACTIVE(take(z0, z1)) → c9(TAKE(active(z0), z1), ACTIVE(z0))
ACTIVE(take(z0, z1)) → c10(TAKE(z0, active(z1)), ACTIVE(z1))
ACTIVE(length(z0)) → c11(LENGTH(active(z0)), ACTIVE(z0))
INF(mark(z0)) → c12(INF(z0))
INF(ok(z0)) → c13(INF(z0))
TAKE(mark(z0), z1) → c14(TAKE(z0, z1))
TAKE(z0, mark(z1)) → c15(TAKE(z0, z1))
TAKE(ok(z0), ok(z1)) → c16(TAKE(z0, z1))
LENGTH(mark(z0)) → c17(LENGTH(z0))
LENGTH(ok(z0)) → c18(LENGTH(z0))
PROPER(eq(z0, z1)) → c19(EQ(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c22(S(proper(z0)), PROPER(z0))
PROPER(inf(z0)) → c24(INF(proper(z0)), PROPER(z0))
PROPER(take(z0, z1)) → c26(TAKE(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(length(z0)) → c28(LENGTH(proper(z0)), PROPER(z0))
EQ(ok(z0), ok(z1)) → c29(EQ(z0, z1))
S(ok(z0)) → c30(S(z0))
TOP(ok(z0)) → c33(TOP(active(z0)), ACTIVE(z0))
ACTIVE(inf(z0)) → c(S(z0))
ACTIVE(take(s(z0), cons(z1, z2))) → c(CONS(z1, take(z0, z2)))
ACTIVE(take(s(z0), cons(z1, z2))) → c(TAKE(z0, z2))
ACTIVE(length(cons(z0, z1))) → c(S(length(z1)))
ACTIVE(length(cons(z0, z1))) → c(LENGTH(z1))
TOP(mark(eq(z0, z1))) → c32(TOP(eq(proper(z0), proper(z1))), PROPER(eq(z0, z1)))
TOP(mark(inf(z0))) → c32(TOP(inf(proper(z0))), PROPER(inf(z0)))
TOP(mark(take(z0, z1))) → c32(TOP(take(proper(z0), proper(z1))), PROPER(take(z0, z1)))
TOP(mark(length(z0))) → c32(TOP(length(proper(z0))), PROPER(length(z0)))
TOP(mark(nil)) → c32(TOP(ok(nil)))
K tuples:
CONS(ok(z0), ok(z1)) → c31(CONS(z0, z1))
TOP(mark(false)) → c32(TOP(ok(false)))
TOP(mark(true)) → c32(TOP(ok(true)))
TOP(mark(s(z0))) → c32(TOP(s(proper(z0))), PROPER(s(z0)))
TOP(mark(0)) → c32(TOP(ok(0)))
Defined Rule Symbols:
active, inf, take, length, proper, eq, s, cons, top, any
Defined Pair Symbols:
INF, TAKE, LENGTH, EQ, S, CONS, TOP, ACTIVE, PROPER
Compound Symbols:
c12, c13, c14, c15, c16, c17, c18, c29, c30, c31, c33, c1, c8, c9, c10, c11, c19, c22, c24, c26, c28, c, c32, c32
(27) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
TOP(mark(nil)) → c32(TOP(ok(nil)))
We considered the (Usable) Rules:
proper(eq(z0, z1)) → eq(proper(z0), proper(z1))
proper(0) → ok(0)
proper(true) → ok(true)
proper(s(z0)) → s(proper(z0))
proper(false) → ok(false)
proper(inf(z0)) → inf(proper(z0))
proper(take(z0, z1)) → take(proper(z0), proper(z1))
proper(nil) → ok(nil)
proper(length(z0)) → length(proper(z0))
length(mark(z0)) → mark(length(z0))
length(ok(z0)) → ok(length(z0))
take(mark(z0), z1) → mark(take(z0, z1))
take(z0, mark(z1)) → mark(take(z0, z1))
take(ok(z0), ok(z1)) → ok(take(z0, z1))
inf(mark(z0)) → mark(inf(z0))
inf(ok(z0)) → ok(inf(z0))
s(ok(z0)) → ok(s(z0))
eq(ok(z0), ok(z1)) → ok(eq(z0, z1))
active(eq(0, 0)) → mark(true)
active(eq(s(z0), s(z1))) → mark(eq(z0, z1))
active(eq(z0, z1)) → mark(false)
active(inf(z0)) → mark(cons(z0, inf(s(z0))))
active(take(0, z0)) → mark(nil)
active(take(s(z0), cons(z1, z2))) → mark(cons(z1, take(z0, z2)))
active(length(nil)) → mark(0)
active(length(cons(z0, z1))) → mark(s(length(z1)))
active(inf(z0)) → inf(active(z0))
active(take(z0, z1)) → take(active(z0), z1)
active(take(z0, z1)) → take(z0, active(z1))
active(length(z0)) → length(active(z0))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
And the Tuples:
INF(mark(z0)) → c12(INF(z0))
INF(ok(z0)) → c13(INF(z0))
TAKE(mark(z0), z1) → c14(TAKE(z0, z1))
TAKE(z0, mark(z1)) → c15(TAKE(z0, z1))
TAKE(ok(z0), ok(z1)) → c16(TAKE(z0, z1))
LENGTH(mark(z0)) → c17(LENGTH(z0))
LENGTH(ok(z0)) → c18(LENGTH(z0))
EQ(ok(z0), ok(z1)) → c29(EQ(z0, z1))
S(ok(z0)) → c30(S(z0))
CONS(ok(z0), ok(z1)) → c31(CONS(z0, z1))
TOP(ok(z0)) → c33(TOP(active(z0)), ACTIVE(z0))
ACTIVE(eq(s(z0), s(z1))) → c1(EQ(z0, z1))
ACTIVE(inf(z0)) → c8(INF(active(z0)), ACTIVE(z0))
ACTIVE(take(z0, z1)) → c9(TAKE(active(z0), z1), ACTIVE(z0))
ACTIVE(take(z0, z1)) → c10(TAKE(z0, active(z1)), ACTIVE(z1))
ACTIVE(length(z0)) → c11(LENGTH(active(z0)), ACTIVE(z0))
PROPER(eq(z0, z1)) → c19(EQ(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c22(S(proper(z0)), PROPER(z0))
PROPER(inf(z0)) → c24(INF(proper(z0)), PROPER(z0))
PROPER(take(z0, z1)) → c26(TAKE(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(length(z0)) → c28(LENGTH(proper(z0)), PROPER(z0))
ACTIVE(inf(z0)) → c(S(z0))
ACTIVE(take(s(z0), cons(z1, z2))) → c(CONS(z1, take(z0, z2)))
ACTIVE(take(s(z0), cons(z1, z2))) → c(TAKE(z0, z2))
ACTIVE(length(cons(z0, z1))) → c(S(length(z1)))
ACTIVE(length(cons(z0, z1))) → c(LENGTH(z1))
TOP(mark(eq(z0, z1))) → c32(TOP(eq(proper(z0), proper(z1))), PROPER(eq(z0, z1)))
TOP(mark(s(z0))) → c32(TOP(s(proper(z0))), PROPER(s(z0)))
TOP(mark(inf(z0))) → c32(TOP(inf(proper(z0))), PROPER(inf(z0)))
TOP(mark(take(z0, z1))) → c32(TOP(take(proper(z0), proper(z1))), PROPER(take(z0, z1)))
TOP(mark(length(z0))) → c32(TOP(length(proper(z0))), PROPER(length(z0)))
TOP(mark(0)) → c32(TOP(ok(0)))
TOP(mark(true)) → c32(TOP(ok(true)))
TOP(mark(false)) → c32(TOP(ok(false)))
TOP(mark(nil)) → c32(TOP(ok(nil)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [1]
POL(ACTIVE(x1)) = 0
POL(CONS(x1, x2)) = 0
POL(EQ(x1, x2)) = 0
POL(INF(x1)) = 0
POL(LENGTH(x1)) = 0
POL(PROPER(x1)) = 0
POL(S(x1)) = 0
POL(TAKE(x1, x2)) = 0
POL(TOP(x1)) = x1
POL(active(x1)) = x1
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c10(x1, x2)) = x1 + x2
POL(c11(x1, x2)) = x1 + x2
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c14(x1)) = x1
POL(c15(x1)) = x1
POL(c16(x1)) = x1
POL(c17(x1)) = x1
POL(c18(x1)) = x1
POL(c19(x1, x2, x3)) = x1 + x2 + x3
POL(c22(x1, x2)) = x1 + x2
POL(c24(x1, x2)) = x1 + x2
POL(c26(x1, x2, x3)) = x1 + x2 + x3
POL(c28(x1, x2)) = x1 + x2
POL(c29(x1)) = x1
POL(c30(x1)) = x1
POL(c31(x1)) = x1
POL(c32(x1)) = x1
POL(c32(x1, x2)) = x1 + x2
POL(c33(x1, x2)) = x1 + x2
POL(c8(x1, x2)) = x1 + x2
POL(c9(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = x1 + [5]x2
POL(eq(x1, x2)) = [1]
POL(false) = 0
POL(inf(x1)) = [1]
POL(length(x1)) = [1]
POL(mark(x1)) = [1]
POL(nil) = 0
POL(ok(x1)) = x1
POL(proper(x1)) = 0
POL(s(x1)) = 0
POL(take(x1, x2)) = [1]
POL(true) = 0
(28) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(eq(0, 0)) → mark(true)
active(eq(s(z0), s(z1))) → mark(eq(z0, z1))
active(eq(z0, z1)) → mark(false)
active(inf(z0)) → mark(cons(z0, inf(s(z0))))
active(take(0, z0)) → mark(nil)
active(take(s(z0), cons(z1, z2))) → mark(cons(z1, take(z0, z2)))
active(length(nil)) → mark(0)
active(length(cons(z0, z1))) → mark(s(length(z1)))
active(inf(z0)) → inf(active(z0))
active(take(z0, z1)) → take(active(z0), z1)
active(take(z0, z1)) → take(z0, active(z1))
active(length(z0)) → length(active(z0))
inf(mark(z0)) → mark(inf(z0))
inf(ok(z0)) → ok(inf(z0))
take(mark(z0), z1) → mark(take(z0, z1))
take(z0, mark(z1)) → mark(take(z0, z1))
take(ok(z0), ok(z1)) → ok(take(z0, z1))
length(mark(z0)) → mark(length(z0))
length(ok(z0)) → ok(length(z0))
proper(eq(z0, z1)) → eq(proper(z0), proper(z1))
proper(0) → ok(0)
proper(true) → ok(true)
proper(s(z0)) → s(proper(z0))
proper(false) → ok(false)
proper(inf(z0)) → inf(proper(z0))
proper(cons(any(z0), z1)) → cons(any(any(proper(z0))), any(proper(z1)))
proper(take(z0, z1)) → take(proper(z0), proper(z1))
proper(nil) → ok(nil)
proper(length(z0)) → length(proper(z0))
eq(ok(z0), ok(z1)) → ok(eq(z0, z1))
s(ok(z0)) → ok(s(z0))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
any(z0) → s(z0)
any(proper(z0)) → any(any(any(z0)))
Tuples:
INF(mark(z0)) → c12(INF(z0))
INF(ok(z0)) → c13(INF(z0))
TAKE(mark(z0), z1) → c14(TAKE(z0, z1))
TAKE(z0, mark(z1)) → c15(TAKE(z0, z1))
TAKE(ok(z0), ok(z1)) → c16(TAKE(z0, z1))
LENGTH(mark(z0)) → c17(LENGTH(z0))
LENGTH(ok(z0)) → c18(LENGTH(z0))
EQ(ok(z0), ok(z1)) → c29(EQ(z0, z1))
S(ok(z0)) → c30(S(z0))
CONS(ok(z0), ok(z1)) → c31(CONS(z0, z1))
TOP(ok(z0)) → c33(TOP(active(z0)), ACTIVE(z0))
ACTIVE(eq(s(z0), s(z1))) → c1(EQ(z0, z1))
ACTIVE(inf(z0)) → c8(INF(active(z0)), ACTIVE(z0))
ACTIVE(take(z0, z1)) → c9(TAKE(active(z0), z1), ACTIVE(z0))
ACTIVE(take(z0, z1)) → c10(TAKE(z0, active(z1)), ACTIVE(z1))
ACTIVE(length(z0)) → c11(LENGTH(active(z0)), ACTIVE(z0))
PROPER(eq(z0, z1)) → c19(EQ(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c22(S(proper(z0)), PROPER(z0))
PROPER(inf(z0)) → c24(INF(proper(z0)), PROPER(z0))
PROPER(take(z0, z1)) → c26(TAKE(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(length(z0)) → c28(LENGTH(proper(z0)), PROPER(z0))
ACTIVE(inf(z0)) → c(S(z0))
ACTIVE(take(s(z0), cons(z1, z2))) → c(CONS(z1, take(z0, z2)))
ACTIVE(take(s(z0), cons(z1, z2))) → c(TAKE(z0, z2))
ACTIVE(length(cons(z0, z1))) → c(S(length(z1)))
ACTIVE(length(cons(z0, z1))) → c(LENGTH(z1))
TOP(mark(eq(z0, z1))) → c32(TOP(eq(proper(z0), proper(z1))), PROPER(eq(z0, z1)))
TOP(mark(s(z0))) → c32(TOP(s(proper(z0))), PROPER(s(z0)))
TOP(mark(inf(z0))) → c32(TOP(inf(proper(z0))), PROPER(inf(z0)))
TOP(mark(take(z0, z1))) → c32(TOP(take(proper(z0), proper(z1))), PROPER(take(z0, z1)))
TOP(mark(length(z0))) → c32(TOP(length(proper(z0))), PROPER(length(z0)))
TOP(mark(0)) → c32(TOP(ok(0)))
TOP(mark(true)) → c32(TOP(ok(true)))
TOP(mark(false)) → c32(TOP(ok(false)))
TOP(mark(nil)) → c32(TOP(ok(nil)))
S tuples:
ACTIVE(eq(s(z0), s(z1))) → c1(EQ(z0, z1))
ACTIVE(inf(z0)) → c8(INF(active(z0)), ACTIVE(z0))
ACTIVE(take(z0, z1)) → c9(TAKE(active(z0), z1), ACTIVE(z0))
ACTIVE(take(z0, z1)) → c10(TAKE(z0, active(z1)), ACTIVE(z1))
ACTIVE(length(z0)) → c11(LENGTH(active(z0)), ACTIVE(z0))
INF(mark(z0)) → c12(INF(z0))
INF(ok(z0)) → c13(INF(z0))
TAKE(mark(z0), z1) → c14(TAKE(z0, z1))
TAKE(z0, mark(z1)) → c15(TAKE(z0, z1))
TAKE(ok(z0), ok(z1)) → c16(TAKE(z0, z1))
LENGTH(mark(z0)) → c17(LENGTH(z0))
LENGTH(ok(z0)) → c18(LENGTH(z0))
PROPER(eq(z0, z1)) → c19(EQ(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c22(S(proper(z0)), PROPER(z0))
PROPER(inf(z0)) → c24(INF(proper(z0)), PROPER(z0))
PROPER(take(z0, z1)) → c26(TAKE(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(length(z0)) → c28(LENGTH(proper(z0)), PROPER(z0))
EQ(ok(z0), ok(z1)) → c29(EQ(z0, z1))
S(ok(z0)) → c30(S(z0))
TOP(ok(z0)) → c33(TOP(active(z0)), ACTIVE(z0))
ACTIVE(inf(z0)) → c(S(z0))
ACTIVE(take(s(z0), cons(z1, z2))) → c(CONS(z1, take(z0, z2)))
ACTIVE(take(s(z0), cons(z1, z2))) → c(TAKE(z0, z2))
ACTIVE(length(cons(z0, z1))) → c(S(length(z1)))
ACTIVE(length(cons(z0, z1))) → c(LENGTH(z1))
TOP(mark(eq(z0, z1))) → c32(TOP(eq(proper(z0), proper(z1))), PROPER(eq(z0, z1)))
TOP(mark(inf(z0))) → c32(TOP(inf(proper(z0))), PROPER(inf(z0)))
TOP(mark(take(z0, z1))) → c32(TOP(take(proper(z0), proper(z1))), PROPER(take(z0, z1)))
TOP(mark(length(z0))) → c32(TOP(length(proper(z0))), PROPER(length(z0)))
K tuples:
CONS(ok(z0), ok(z1)) → c31(CONS(z0, z1))
TOP(mark(false)) → c32(TOP(ok(false)))
TOP(mark(true)) → c32(TOP(ok(true)))
TOP(mark(s(z0))) → c32(TOP(s(proper(z0))), PROPER(s(z0)))
TOP(mark(0)) → c32(TOP(ok(0)))
TOP(mark(nil)) → c32(TOP(ok(nil)))
Defined Rule Symbols:
active, inf, take, length, proper, eq, s, cons, top, any
Defined Pair Symbols:
INF, TAKE, LENGTH, EQ, S, CONS, TOP, ACTIVE, PROPER
Compound Symbols:
c12, c13, c14, c15, c16, c17, c18, c29, c30, c31, c33, c1, c8, c9, c10, c11, c19, c22, c24, c26, c28, c, c32, c32
(29) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
TOP(
ok(
z0)) →
c33(
TOP(
active(
z0)),
ACTIVE(
z0)) by
TOP(ok(eq(0, 0))) → c33(TOP(mark(true)), ACTIVE(eq(0, 0)))
TOP(ok(eq(s(z0), s(z1)))) → c33(TOP(mark(eq(z0, z1))), ACTIVE(eq(s(z0), s(z1))))
TOP(ok(eq(z0, z1))) → c33(TOP(mark(false)), ACTIVE(eq(z0, z1)))
TOP(ok(inf(z0))) → c33(TOP(mark(cons(z0, inf(s(z0))))), ACTIVE(inf(z0)))
TOP(ok(take(0, z0))) → c33(TOP(mark(nil)), ACTIVE(take(0, z0)))
TOP(ok(take(s(z0), cons(z1, z2)))) → c33(TOP(mark(cons(z1, take(z0, z2)))), ACTIVE(take(s(z0), cons(z1, z2))))
TOP(ok(length(nil))) → c33(TOP(mark(0)), ACTIVE(length(nil)))
TOP(ok(length(cons(z0, z1)))) → c33(TOP(mark(s(length(z1)))), ACTIVE(length(cons(z0, z1))))
TOP(ok(inf(z0))) → c33(TOP(inf(active(z0))), ACTIVE(inf(z0)))
TOP(ok(take(z0, z1))) → c33(TOP(take(active(z0), z1)), ACTIVE(take(z0, z1)))
TOP(ok(take(z0, z1))) → c33(TOP(take(z0, active(z1))), ACTIVE(take(z0, z1)))
TOP(ok(length(z0))) → c33(TOP(length(active(z0))), ACTIVE(length(z0)))
(30) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(eq(0, 0)) → mark(true)
active(eq(s(z0), s(z1))) → mark(eq(z0, z1))
active(eq(z0, z1)) → mark(false)
active(inf(z0)) → mark(cons(z0, inf(s(z0))))
active(take(0, z0)) → mark(nil)
active(take(s(z0), cons(z1, z2))) → mark(cons(z1, take(z0, z2)))
active(length(nil)) → mark(0)
active(length(cons(z0, z1))) → mark(s(length(z1)))
active(inf(z0)) → inf(active(z0))
active(take(z0, z1)) → take(active(z0), z1)
active(take(z0, z1)) → take(z0, active(z1))
active(length(z0)) → length(active(z0))
inf(mark(z0)) → mark(inf(z0))
inf(ok(z0)) → ok(inf(z0))
take(mark(z0), z1) → mark(take(z0, z1))
take(z0, mark(z1)) → mark(take(z0, z1))
take(ok(z0), ok(z1)) → ok(take(z0, z1))
length(mark(z0)) → mark(length(z0))
length(ok(z0)) → ok(length(z0))
proper(eq(z0, z1)) → eq(proper(z0), proper(z1))
proper(0) → ok(0)
proper(true) → ok(true)
proper(s(z0)) → s(proper(z0))
proper(false) → ok(false)
proper(inf(z0)) → inf(proper(z0))
proper(cons(any(z0), z1)) → cons(any(any(proper(z0))), any(proper(z1)))
proper(take(z0, z1)) → take(proper(z0), proper(z1))
proper(nil) → ok(nil)
proper(length(z0)) → length(proper(z0))
eq(ok(z0), ok(z1)) → ok(eq(z0, z1))
s(ok(z0)) → ok(s(z0))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
any(z0) → s(z0)
any(proper(z0)) → any(any(any(z0)))
Tuples:
INF(mark(z0)) → c12(INF(z0))
INF(ok(z0)) → c13(INF(z0))
TAKE(mark(z0), z1) → c14(TAKE(z0, z1))
TAKE(z0, mark(z1)) → c15(TAKE(z0, z1))
TAKE(ok(z0), ok(z1)) → c16(TAKE(z0, z1))
LENGTH(mark(z0)) → c17(LENGTH(z0))
LENGTH(ok(z0)) → c18(LENGTH(z0))
EQ(ok(z0), ok(z1)) → c29(EQ(z0, z1))
S(ok(z0)) → c30(S(z0))
CONS(ok(z0), ok(z1)) → c31(CONS(z0, z1))
ACTIVE(eq(s(z0), s(z1))) → c1(EQ(z0, z1))
ACTIVE(inf(z0)) → c8(INF(active(z0)), ACTIVE(z0))
ACTIVE(take(z0, z1)) → c9(TAKE(active(z0), z1), ACTIVE(z0))
ACTIVE(take(z0, z1)) → c10(TAKE(z0, active(z1)), ACTIVE(z1))
ACTIVE(length(z0)) → c11(LENGTH(active(z0)), ACTIVE(z0))
PROPER(eq(z0, z1)) → c19(EQ(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c22(S(proper(z0)), PROPER(z0))
PROPER(inf(z0)) → c24(INF(proper(z0)), PROPER(z0))
PROPER(take(z0, z1)) → c26(TAKE(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(length(z0)) → c28(LENGTH(proper(z0)), PROPER(z0))
ACTIVE(inf(z0)) → c(S(z0))
ACTIVE(take(s(z0), cons(z1, z2))) → c(CONS(z1, take(z0, z2)))
ACTIVE(take(s(z0), cons(z1, z2))) → c(TAKE(z0, z2))
ACTIVE(length(cons(z0, z1))) → c(S(length(z1)))
ACTIVE(length(cons(z0, z1))) → c(LENGTH(z1))
TOP(mark(eq(z0, z1))) → c32(TOP(eq(proper(z0), proper(z1))), PROPER(eq(z0, z1)))
TOP(mark(s(z0))) → c32(TOP(s(proper(z0))), PROPER(s(z0)))
TOP(mark(inf(z0))) → c32(TOP(inf(proper(z0))), PROPER(inf(z0)))
TOP(mark(take(z0, z1))) → c32(TOP(take(proper(z0), proper(z1))), PROPER(take(z0, z1)))
TOP(mark(length(z0))) → c32(TOP(length(proper(z0))), PROPER(length(z0)))
TOP(mark(0)) → c32(TOP(ok(0)))
TOP(mark(true)) → c32(TOP(ok(true)))
TOP(mark(false)) → c32(TOP(ok(false)))
TOP(mark(nil)) → c32(TOP(ok(nil)))
TOP(ok(eq(0, 0))) → c33(TOP(mark(true)), ACTIVE(eq(0, 0)))
TOP(ok(eq(s(z0), s(z1)))) → c33(TOP(mark(eq(z0, z1))), ACTIVE(eq(s(z0), s(z1))))
TOP(ok(eq(z0, z1))) → c33(TOP(mark(false)), ACTIVE(eq(z0, z1)))
TOP(ok(inf(z0))) → c33(TOP(mark(cons(z0, inf(s(z0))))), ACTIVE(inf(z0)))
TOP(ok(take(0, z0))) → c33(TOP(mark(nil)), ACTIVE(take(0, z0)))
TOP(ok(take(s(z0), cons(z1, z2)))) → c33(TOP(mark(cons(z1, take(z0, z2)))), ACTIVE(take(s(z0), cons(z1, z2))))
TOP(ok(length(nil))) → c33(TOP(mark(0)), ACTIVE(length(nil)))
TOP(ok(length(cons(z0, z1)))) → c33(TOP(mark(s(length(z1)))), ACTIVE(length(cons(z0, z1))))
TOP(ok(inf(z0))) → c33(TOP(inf(active(z0))), ACTIVE(inf(z0)))
TOP(ok(take(z0, z1))) → c33(TOP(take(active(z0), z1)), ACTIVE(take(z0, z1)))
TOP(ok(take(z0, z1))) → c33(TOP(take(z0, active(z1))), ACTIVE(take(z0, z1)))
TOP(ok(length(z0))) → c33(TOP(length(active(z0))), ACTIVE(length(z0)))
S tuples:
ACTIVE(eq(s(z0), s(z1))) → c1(EQ(z0, z1))
ACTIVE(inf(z0)) → c8(INF(active(z0)), ACTIVE(z0))
ACTIVE(take(z0, z1)) → c9(TAKE(active(z0), z1), ACTIVE(z0))
ACTIVE(take(z0, z1)) → c10(TAKE(z0, active(z1)), ACTIVE(z1))
ACTIVE(length(z0)) → c11(LENGTH(active(z0)), ACTIVE(z0))
INF(mark(z0)) → c12(INF(z0))
INF(ok(z0)) → c13(INF(z0))
TAKE(mark(z0), z1) → c14(TAKE(z0, z1))
TAKE(z0, mark(z1)) → c15(TAKE(z0, z1))
TAKE(ok(z0), ok(z1)) → c16(TAKE(z0, z1))
LENGTH(mark(z0)) → c17(LENGTH(z0))
LENGTH(ok(z0)) → c18(LENGTH(z0))
PROPER(eq(z0, z1)) → c19(EQ(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c22(S(proper(z0)), PROPER(z0))
PROPER(inf(z0)) → c24(INF(proper(z0)), PROPER(z0))
PROPER(take(z0, z1)) → c26(TAKE(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(length(z0)) → c28(LENGTH(proper(z0)), PROPER(z0))
EQ(ok(z0), ok(z1)) → c29(EQ(z0, z1))
S(ok(z0)) → c30(S(z0))
ACTIVE(inf(z0)) → c(S(z0))
ACTIVE(take(s(z0), cons(z1, z2))) → c(CONS(z1, take(z0, z2)))
ACTIVE(take(s(z0), cons(z1, z2))) → c(TAKE(z0, z2))
ACTIVE(length(cons(z0, z1))) → c(S(length(z1)))
ACTIVE(length(cons(z0, z1))) → c(LENGTH(z1))
TOP(mark(eq(z0, z1))) → c32(TOP(eq(proper(z0), proper(z1))), PROPER(eq(z0, z1)))
TOP(mark(inf(z0))) → c32(TOP(inf(proper(z0))), PROPER(inf(z0)))
TOP(mark(take(z0, z1))) → c32(TOP(take(proper(z0), proper(z1))), PROPER(take(z0, z1)))
TOP(mark(length(z0))) → c32(TOP(length(proper(z0))), PROPER(length(z0)))
TOP(ok(eq(0, 0))) → c33(TOP(mark(true)), ACTIVE(eq(0, 0)))
TOP(ok(eq(s(z0), s(z1)))) → c33(TOP(mark(eq(z0, z1))), ACTIVE(eq(s(z0), s(z1))))
TOP(ok(eq(z0, z1))) → c33(TOP(mark(false)), ACTIVE(eq(z0, z1)))
TOP(ok(inf(z0))) → c33(TOP(mark(cons(z0, inf(s(z0))))), ACTIVE(inf(z0)))
TOP(ok(take(0, z0))) → c33(TOP(mark(nil)), ACTIVE(take(0, z0)))
TOP(ok(take(s(z0), cons(z1, z2)))) → c33(TOP(mark(cons(z1, take(z0, z2)))), ACTIVE(take(s(z0), cons(z1, z2))))
TOP(ok(length(nil))) → c33(TOP(mark(0)), ACTIVE(length(nil)))
TOP(ok(length(cons(z0, z1)))) → c33(TOP(mark(s(length(z1)))), ACTIVE(length(cons(z0, z1))))
TOP(ok(inf(z0))) → c33(TOP(inf(active(z0))), ACTIVE(inf(z0)))
TOP(ok(take(z0, z1))) → c33(TOP(take(active(z0), z1)), ACTIVE(take(z0, z1)))
TOP(ok(take(z0, z1))) → c33(TOP(take(z0, active(z1))), ACTIVE(take(z0, z1)))
TOP(ok(length(z0))) → c33(TOP(length(active(z0))), ACTIVE(length(z0)))
K tuples:
CONS(ok(z0), ok(z1)) → c31(CONS(z0, z1))
TOP(mark(false)) → c32(TOP(ok(false)))
TOP(mark(true)) → c32(TOP(ok(true)))
TOP(mark(s(z0))) → c32(TOP(s(proper(z0))), PROPER(s(z0)))
TOP(mark(0)) → c32(TOP(ok(0)))
TOP(mark(nil)) → c32(TOP(ok(nil)))
Defined Rule Symbols:
active, inf, take, length, proper, eq, s, cons, top, any
Defined Pair Symbols:
INF, TAKE, LENGTH, EQ, S, CONS, ACTIVE, PROPER, TOP
Compound Symbols:
c12, c13, c14, c15, c16, c17, c18, c29, c30, c31, c1, c8, c9, c10, c11, c19, c22, c24, c26, c28, c, c32, c32, c33
(31) CdtUnreachableProof (EQUIVALENT transformation)
The following tuples could be removed as they are not reachable from basic start terms:
ACTIVE(eq(s(z0), s(z1))) → c1(EQ(z0, z1))
ACTIVE(inf(z0)) → c8(INF(active(z0)), ACTIVE(z0))
ACTIVE(take(z0, z1)) → c9(TAKE(active(z0), z1), ACTIVE(z0))
ACTIVE(take(z0, z1)) → c10(TAKE(z0, active(z1)), ACTIVE(z1))
ACTIVE(length(z0)) → c11(LENGTH(active(z0)), ACTIVE(z0))
PROPER(eq(z0, z1)) → c19(EQ(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c22(S(proper(z0)), PROPER(z0))
PROPER(inf(z0)) → c24(INF(proper(z0)), PROPER(z0))
PROPER(take(z0, z1)) → c26(TAKE(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(length(z0)) → c28(LENGTH(proper(z0)), PROPER(z0))
ACTIVE(inf(z0)) → c(S(z0))
ACTIVE(take(s(z0), cons(z1, z2))) → c(CONS(z1, take(z0, z2)))
ACTIVE(take(s(z0), cons(z1, z2))) → c(TAKE(z0, z2))
ACTIVE(length(cons(z0, z1))) → c(S(length(z1)))
ACTIVE(length(cons(z0, z1))) → c(LENGTH(z1))
TOP(mark(eq(z0, z1))) → c32(TOP(eq(proper(z0), proper(z1))), PROPER(eq(z0, z1)))
TOP(mark(s(z0))) → c32(TOP(s(proper(z0))), PROPER(s(z0)))
TOP(mark(inf(z0))) → c32(TOP(inf(proper(z0))), PROPER(inf(z0)))
TOP(mark(take(z0, z1))) → c32(TOP(take(proper(z0), proper(z1))), PROPER(take(z0, z1)))
TOP(mark(length(z0))) → c32(TOP(length(proper(z0))), PROPER(length(z0)))
TOP(ok(eq(0, 0))) → c33(TOP(mark(true)), ACTIVE(eq(0, 0)))
TOP(ok(eq(s(z0), s(z1)))) → c33(TOP(mark(eq(z0, z1))), ACTIVE(eq(s(z0), s(z1))))
TOP(ok(eq(z0, z1))) → c33(TOP(mark(false)), ACTIVE(eq(z0, z1)))
TOP(ok(inf(z0))) → c33(TOP(mark(cons(z0, inf(s(z0))))), ACTIVE(inf(z0)))
TOP(ok(take(0, z0))) → c33(TOP(mark(nil)), ACTIVE(take(0, z0)))
TOP(ok(take(s(z0), cons(z1, z2)))) → c33(TOP(mark(cons(z1, take(z0, z2)))), ACTIVE(take(s(z0), cons(z1, z2))))
TOP(ok(length(nil))) → c33(TOP(mark(0)), ACTIVE(length(nil)))
TOP(ok(length(cons(z0, z1)))) → c33(TOP(mark(s(length(z1)))), ACTIVE(length(cons(z0, z1))))
TOP(ok(inf(z0))) → c33(TOP(inf(active(z0))), ACTIVE(inf(z0)))
TOP(ok(take(z0, z1))) → c33(TOP(take(active(z0), z1)), ACTIVE(take(z0, z1)))
TOP(ok(take(z0, z1))) → c33(TOP(take(z0, active(z1))), ACTIVE(take(z0, z1)))
TOP(ok(length(z0))) → c33(TOP(length(active(z0))), ACTIVE(length(z0)))
(32) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(eq(0, 0)) → mark(true)
active(eq(s(z0), s(z1))) → mark(eq(z0, z1))
active(eq(z0, z1)) → mark(false)
active(inf(z0)) → mark(cons(z0, inf(s(z0))))
active(take(0, z0)) → mark(nil)
active(take(s(z0), cons(z1, z2))) → mark(cons(z1, take(z0, z2)))
active(length(nil)) → mark(0)
active(length(cons(z0, z1))) → mark(s(length(z1)))
active(inf(z0)) → inf(active(z0))
active(take(z0, z1)) → take(active(z0), z1)
active(take(z0, z1)) → take(z0, active(z1))
active(length(z0)) → length(active(z0))
inf(mark(z0)) → mark(inf(z0))
inf(ok(z0)) → ok(inf(z0))
take(mark(z0), z1) → mark(take(z0, z1))
take(z0, mark(z1)) → mark(take(z0, z1))
take(ok(z0), ok(z1)) → ok(take(z0, z1))
length(mark(z0)) → mark(length(z0))
length(ok(z0)) → ok(length(z0))
proper(eq(z0, z1)) → eq(proper(z0), proper(z1))
proper(0) → ok(0)
proper(true) → ok(true)
proper(s(z0)) → s(proper(z0))
proper(false) → ok(false)
proper(inf(z0)) → inf(proper(z0))
proper(cons(any(z0), z1)) → cons(any(any(proper(z0))), any(proper(z1)))
proper(take(z0, z1)) → take(proper(z0), proper(z1))
proper(nil) → ok(nil)
proper(length(z0)) → length(proper(z0))
eq(ok(z0), ok(z1)) → ok(eq(z0, z1))
s(ok(z0)) → ok(s(z0))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
any(z0) → s(z0)
any(proper(z0)) → any(any(any(z0)))
Tuples:
INF(mark(z0)) → c12(INF(z0))
INF(ok(z0)) → c13(INF(z0))
TAKE(mark(z0), z1) → c14(TAKE(z0, z1))
TAKE(z0, mark(z1)) → c15(TAKE(z0, z1))
TAKE(ok(z0), ok(z1)) → c16(TAKE(z0, z1))
LENGTH(mark(z0)) → c17(LENGTH(z0))
LENGTH(ok(z0)) → c18(LENGTH(z0))
EQ(ok(z0), ok(z1)) → c29(EQ(z0, z1))
S(ok(z0)) → c30(S(z0))
CONS(ok(z0), ok(z1)) → c31(CONS(z0, z1))
TOP(mark(0)) → c32(TOP(ok(0)))
TOP(mark(true)) → c32(TOP(ok(true)))
TOP(mark(false)) → c32(TOP(ok(false)))
TOP(mark(nil)) → c32(TOP(ok(nil)))
S tuples:
INF(mark(z0)) → c12(INF(z0))
INF(ok(z0)) → c13(INF(z0))
TAKE(mark(z0), z1) → c14(TAKE(z0, z1))
TAKE(z0, mark(z1)) → c15(TAKE(z0, z1))
TAKE(ok(z0), ok(z1)) → c16(TAKE(z0, z1))
LENGTH(mark(z0)) → c17(LENGTH(z0))
LENGTH(ok(z0)) → c18(LENGTH(z0))
EQ(ok(z0), ok(z1)) → c29(EQ(z0, z1))
S(ok(z0)) → c30(S(z0))
K tuples:
CONS(ok(z0), ok(z1)) → c31(CONS(z0, z1))
TOP(mark(false)) → c32(TOP(ok(false)))
TOP(mark(true)) → c32(TOP(ok(true)))
TOP(mark(0)) → c32(TOP(ok(0)))
TOP(mark(nil)) → c32(TOP(ok(nil)))
Defined Rule Symbols:
active, inf, take, length, proper, eq, s, cons, top, any
Defined Pair Symbols:
INF, TAKE, LENGTH, EQ, S, CONS, TOP
Compound Symbols:
c12, c13, c14, c15, c16, c17, c18, c29, c30, c31, c32
(33) CdtGraphRemoveDanglingProof (ComplexityIfPolyImplication transformation)
Removed 4 of 14 dangling nodes:
TOP(mark(nil)) → c32(TOP(ok(nil)))
TOP(mark(0)) → c32(TOP(ok(0)))
TOP(mark(false)) → c32(TOP(ok(false)))
TOP(mark(true)) → c32(TOP(ok(true)))
(34) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(eq(0, 0)) → mark(true)
active(eq(s(z0), s(z1))) → mark(eq(z0, z1))
active(eq(z0, z1)) → mark(false)
active(inf(z0)) → mark(cons(z0, inf(s(z0))))
active(take(0, z0)) → mark(nil)
active(take(s(z0), cons(z1, z2))) → mark(cons(z1, take(z0, z2)))
active(length(nil)) → mark(0)
active(length(cons(z0, z1))) → mark(s(length(z1)))
active(inf(z0)) → inf(active(z0))
active(take(z0, z1)) → take(active(z0), z1)
active(take(z0, z1)) → take(z0, active(z1))
active(length(z0)) → length(active(z0))
inf(mark(z0)) → mark(inf(z0))
inf(ok(z0)) → ok(inf(z0))
take(mark(z0), z1) → mark(take(z0, z1))
take(z0, mark(z1)) → mark(take(z0, z1))
take(ok(z0), ok(z1)) → ok(take(z0, z1))
length(mark(z0)) → mark(length(z0))
length(ok(z0)) → ok(length(z0))
proper(eq(z0, z1)) → eq(proper(z0), proper(z1))
proper(0) → ok(0)
proper(true) → ok(true)
proper(s(z0)) → s(proper(z0))
proper(false) → ok(false)
proper(inf(z0)) → inf(proper(z0))
proper(cons(any(z0), z1)) → cons(any(any(proper(z0))), any(proper(z1)))
proper(take(z0, z1)) → take(proper(z0), proper(z1))
proper(nil) → ok(nil)
proper(length(z0)) → length(proper(z0))
eq(ok(z0), ok(z1)) → ok(eq(z0, z1))
s(ok(z0)) → ok(s(z0))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
any(z0) → s(z0)
any(proper(z0)) → any(any(any(z0)))
Tuples:
INF(mark(z0)) → c12(INF(z0))
INF(ok(z0)) → c13(INF(z0))
TAKE(mark(z0), z1) → c14(TAKE(z0, z1))
TAKE(z0, mark(z1)) → c15(TAKE(z0, z1))
TAKE(ok(z0), ok(z1)) → c16(TAKE(z0, z1))
LENGTH(mark(z0)) → c17(LENGTH(z0))
LENGTH(ok(z0)) → c18(LENGTH(z0))
EQ(ok(z0), ok(z1)) → c29(EQ(z0, z1))
S(ok(z0)) → c30(S(z0))
CONS(ok(z0), ok(z1)) → c31(CONS(z0, z1))
S tuples:
INF(mark(z0)) → c12(INF(z0))
INF(ok(z0)) → c13(INF(z0))
TAKE(mark(z0), z1) → c14(TAKE(z0, z1))
TAKE(z0, mark(z1)) → c15(TAKE(z0, z1))
TAKE(ok(z0), ok(z1)) → c16(TAKE(z0, z1))
LENGTH(mark(z0)) → c17(LENGTH(z0))
LENGTH(ok(z0)) → c18(LENGTH(z0))
EQ(ok(z0), ok(z1)) → c29(EQ(z0, z1))
S(ok(z0)) → c30(S(z0))
K tuples:
CONS(ok(z0), ok(z1)) → c31(CONS(z0, z1))
Defined Rule Symbols:
active, inf, take, length, proper, eq, s, cons, top, any
Defined Pair Symbols:
INF, TAKE, LENGTH, EQ, S, CONS
Compound Symbols:
c12, c13, c14, c15, c16, c17, c18, c29, c30, c31
(35) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
S(ok(z0)) → c30(S(z0))
We considered the (Usable) Rules:none
And the Tuples:
INF(mark(z0)) → c12(INF(z0))
INF(ok(z0)) → c13(INF(z0))
TAKE(mark(z0), z1) → c14(TAKE(z0, z1))
TAKE(z0, mark(z1)) → c15(TAKE(z0, z1))
TAKE(ok(z0), ok(z1)) → c16(TAKE(z0, z1))
LENGTH(mark(z0)) → c17(LENGTH(z0))
LENGTH(ok(z0)) → c18(LENGTH(z0))
EQ(ok(z0), ok(z1)) → c29(EQ(z0, z1))
S(ok(z0)) → c30(S(z0))
CONS(ok(z0), ok(z1)) → c31(CONS(z0, z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(CONS(x1, x2)) = 0
POL(EQ(x1, x2)) = [2]x2
POL(INF(x1)) = 0
POL(LENGTH(x1)) = 0
POL(S(x1)) = x1
POL(TAKE(x1, x2)) = 0
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c14(x1)) = x1
POL(c15(x1)) = x1
POL(c16(x1)) = x1
POL(c17(x1)) = x1
POL(c18(x1)) = x1
POL(c29(x1)) = x1
POL(c30(x1)) = x1
POL(c31(x1)) = x1
POL(mark(x1)) = [2]
POL(ok(x1)) = [2] + x1
(36) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(eq(0, 0)) → mark(true)
active(eq(s(z0), s(z1))) → mark(eq(z0, z1))
active(eq(z0, z1)) → mark(false)
active(inf(z0)) → mark(cons(z0, inf(s(z0))))
active(take(0, z0)) → mark(nil)
active(take(s(z0), cons(z1, z2))) → mark(cons(z1, take(z0, z2)))
active(length(nil)) → mark(0)
active(length(cons(z0, z1))) → mark(s(length(z1)))
active(inf(z0)) → inf(active(z0))
active(take(z0, z1)) → take(active(z0), z1)
active(take(z0, z1)) → take(z0, active(z1))
active(length(z0)) → length(active(z0))
inf(mark(z0)) → mark(inf(z0))
inf(ok(z0)) → ok(inf(z0))
take(mark(z0), z1) → mark(take(z0, z1))
take(z0, mark(z1)) → mark(take(z0, z1))
take(ok(z0), ok(z1)) → ok(take(z0, z1))
length(mark(z0)) → mark(length(z0))
length(ok(z0)) → ok(length(z0))
proper(eq(z0, z1)) → eq(proper(z0), proper(z1))
proper(0) → ok(0)
proper(true) → ok(true)
proper(s(z0)) → s(proper(z0))
proper(false) → ok(false)
proper(inf(z0)) → inf(proper(z0))
proper(cons(any(z0), z1)) → cons(any(any(proper(z0))), any(proper(z1)))
proper(take(z0, z1)) → take(proper(z0), proper(z1))
proper(nil) → ok(nil)
proper(length(z0)) → length(proper(z0))
eq(ok(z0), ok(z1)) → ok(eq(z0, z1))
s(ok(z0)) → ok(s(z0))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
any(z0) → s(z0)
any(proper(z0)) → any(any(any(z0)))
Tuples:
INF(mark(z0)) → c12(INF(z0))
INF(ok(z0)) → c13(INF(z0))
TAKE(mark(z0), z1) → c14(TAKE(z0, z1))
TAKE(z0, mark(z1)) → c15(TAKE(z0, z1))
TAKE(ok(z0), ok(z1)) → c16(TAKE(z0, z1))
LENGTH(mark(z0)) → c17(LENGTH(z0))
LENGTH(ok(z0)) → c18(LENGTH(z0))
EQ(ok(z0), ok(z1)) → c29(EQ(z0, z1))
S(ok(z0)) → c30(S(z0))
CONS(ok(z0), ok(z1)) → c31(CONS(z0, z1))
S tuples:
INF(mark(z0)) → c12(INF(z0))
INF(ok(z0)) → c13(INF(z0))
TAKE(mark(z0), z1) → c14(TAKE(z0, z1))
TAKE(z0, mark(z1)) → c15(TAKE(z0, z1))
TAKE(ok(z0), ok(z1)) → c16(TAKE(z0, z1))
LENGTH(mark(z0)) → c17(LENGTH(z0))
LENGTH(ok(z0)) → c18(LENGTH(z0))
EQ(ok(z0), ok(z1)) → c29(EQ(z0, z1))
K tuples:
CONS(ok(z0), ok(z1)) → c31(CONS(z0, z1))
S(ok(z0)) → c30(S(z0))
Defined Rule Symbols:
active, inf, take, length, proper, eq, s, cons, top, any
Defined Pair Symbols:
INF, TAKE, LENGTH, EQ, S, CONS
Compound Symbols:
c12, c13, c14, c15, c16, c17, c18, c29, c30, c31
(37) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
LENGTH(ok(z0)) → c18(LENGTH(z0))
We considered the (Usable) Rules:none
And the Tuples:
INF(mark(z0)) → c12(INF(z0))
INF(ok(z0)) → c13(INF(z0))
TAKE(mark(z0), z1) → c14(TAKE(z0, z1))
TAKE(z0, mark(z1)) → c15(TAKE(z0, z1))
TAKE(ok(z0), ok(z1)) → c16(TAKE(z0, z1))
LENGTH(mark(z0)) → c17(LENGTH(z0))
LENGTH(ok(z0)) → c18(LENGTH(z0))
EQ(ok(z0), ok(z1)) → c29(EQ(z0, z1))
S(ok(z0)) → c30(S(z0))
CONS(ok(z0), ok(z1)) → c31(CONS(z0, z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(CONS(x1, x2)) = [4]x1 + [4]x2
POL(EQ(x1, x2)) = [2]x1 + [2]x2
POL(INF(x1)) = 0
POL(LENGTH(x1)) = x1
POL(S(x1)) = [2]x1
POL(TAKE(x1, x2)) = 0
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c14(x1)) = x1
POL(c15(x1)) = x1
POL(c16(x1)) = x1
POL(c17(x1)) = x1
POL(c18(x1)) = x1
POL(c29(x1)) = x1
POL(c30(x1)) = x1
POL(c31(x1)) = x1
POL(mark(x1)) = x1
POL(ok(x1)) = [4] + x1
(38) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(eq(0, 0)) → mark(true)
active(eq(s(z0), s(z1))) → mark(eq(z0, z1))
active(eq(z0, z1)) → mark(false)
active(inf(z0)) → mark(cons(z0, inf(s(z0))))
active(take(0, z0)) → mark(nil)
active(take(s(z0), cons(z1, z2))) → mark(cons(z1, take(z0, z2)))
active(length(nil)) → mark(0)
active(length(cons(z0, z1))) → mark(s(length(z1)))
active(inf(z0)) → inf(active(z0))
active(take(z0, z1)) → take(active(z0), z1)
active(take(z0, z1)) → take(z0, active(z1))
active(length(z0)) → length(active(z0))
inf(mark(z0)) → mark(inf(z0))
inf(ok(z0)) → ok(inf(z0))
take(mark(z0), z1) → mark(take(z0, z1))
take(z0, mark(z1)) → mark(take(z0, z1))
take(ok(z0), ok(z1)) → ok(take(z0, z1))
length(mark(z0)) → mark(length(z0))
length(ok(z0)) → ok(length(z0))
proper(eq(z0, z1)) → eq(proper(z0), proper(z1))
proper(0) → ok(0)
proper(true) → ok(true)
proper(s(z0)) → s(proper(z0))
proper(false) → ok(false)
proper(inf(z0)) → inf(proper(z0))
proper(cons(any(z0), z1)) → cons(any(any(proper(z0))), any(proper(z1)))
proper(take(z0, z1)) → take(proper(z0), proper(z1))
proper(nil) → ok(nil)
proper(length(z0)) → length(proper(z0))
eq(ok(z0), ok(z1)) → ok(eq(z0, z1))
s(ok(z0)) → ok(s(z0))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
any(z0) → s(z0)
any(proper(z0)) → any(any(any(z0)))
Tuples:
INF(mark(z0)) → c12(INF(z0))
INF(ok(z0)) → c13(INF(z0))
TAKE(mark(z0), z1) → c14(TAKE(z0, z1))
TAKE(z0, mark(z1)) → c15(TAKE(z0, z1))
TAKE(ok(z0), ok(z1)) → c16(TAKE(z0, z1))
LENGTH(mark(z0)) → c17(LENGTH(z0))
LENGTH(ok(z0)) → c18(LENGTH(z0))
EQ(ok(z0), ok(z1)) → c29(EQ(z0, z1))
S(ok(z0)) → c30(S(z0))
CONS(ok(z0), ok(z1)) → c31(CONS(z0, z1))
S tuples:
INF(mark(z0)) → c12(INF(z0))
INF(ok(z0)) → c13(INF(z0))
TAKE(mark(z0), z1) → c14(TAKE(z0, z1))
TAKE(z0, mark(z1)) → c15(TAKE(z0, z1))
TAKE(ok(z0), ok(z1)) → c16(TAKE(z0, z1))
LENGTH(mark(z0)) → c17(LENGTH(z0))
EQ(ok(z0), ok(z1)) → c29(EQ(z0, z1))
K tuples:
CONS(ok(z0), ok(z1)) → c31(CONS(z0, z1))
S(ok(z0)) → c30(S(z0))
LENGTH(ok(z0)) → c18(LENGTH(z0))
Defined Rule Symbols:
active, inf, take, length, proper, eq, s, cons, top, any
Defined Pair Symbols:
INF, TAKE, LENGTH, EQ, S, CONS
Compound Symbols:
c12, c13, c14, c15, c16, c17, c18, c29, c30, c31
(39) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
TAKE(mark(z0), z1) → c14(TAKE(z0, z1))
TAKE(z0, mark(z1)) → c15(TAKE(z0, z1))
We considered the (Usable) Rules:none
And the Tuples:
INF(mark(z0)) → c12(INF(z0))
INF(ok(z0)) → c13(INF(z0))
TAKE(mark(z0), z1) → c14(TAKE(z0, z1))
TAKE(z0, mark(z1)) → c15(TAKE(z0, z1))
TAKE(ok(z0), ok(z1)) → c16(TAKE(z0, z1))
LENGTH(mark(z0)) → c17(LENGTH(z0))
LENGTH(ok(z0)) → c18(LENGTH(z0))
EQ(ok(z0), ok(z1)) → c29(EQ(z0, z1))
S(ok(z0)) → c30(S(z0))
CONS(ok(z0), ok(z1)) → c31(CONS(z0, z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(CONS(x1, x2)) = [3]x1 + [2]x2
POL(EQ(x1, x2)) = 0
POL(INF(x1)) = 0
POL(LENGTH(x1)) = x1
POL(S(x1)) = [2]x1
POL(TAKE(x1, x2)) = [4]x1 + [2]x2
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c14(x1)) = x1
POL(c15(x1)) = x1
POL(c16(x1)) = x1
POL(c17(x1)) = x1
POL(c18(x1)) = x1
POL(c29(x1)) = x1
POL(c30(x1)) = x1
POL(c31(x1)) = x1
POL(mark(x1)) = [1] + x1
POL(ok(x1)) = x1
(40) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(eq(0, 0)) → mark(true)
active(eq(s(z0), s(z1))) → mark(eq(z0, z1))
active(eq(z0, z1)) → mark(false)
active(inf(z0)) → mark(cons(z0, inf(s(z0))))
active(take(0, z0)) → mark(nil)
active(take(s(z0), cons(z1, z2))) → mark(cons(z1, take(z0, z2)))
active(length(nil)) → mark(0)
active(length(cons(z0, z1))) → mark(s(length(z1)))
active(inf(z0)) → inf(active(z0))
active(take(z0, z1)) → take(active(z0), z1)
active(take(z0, z1)) → take(z0, active(z1))
active(length(z0)) → length(active(z0))
inf(mark(z0)) → mark(inf(z0))
inf(ok(z0)) → ok(inf(z0))
take(mark(z0), z1) → mark(take(z0, z1))
take(z0, mark(z1)) → mark(take(z0, z1))
take(ok(z0), ok(z1)) → ok(take(z0, z1))
length(mark(z0)) → mark(length(z0))
length(ok(z0)) → ok(length(z0))
proper(eq(z0, z1)) → eq(proper(z0), proper(z1))
proper(0) → ok(0)
proper(true) → ok(true)
proper(s(z0)) → s(proper(z0))
proper(false) → ok(false)
proper(inf(z0)) → inf(proper(z0))
proper(cons(any(z0), z1)) → cons(any(any(proper(z0))), any(proper(z1)))
proper(take(z0, z1)) → take(proper(z0), proper(z1))
proper(nil) → ok(nil)
proper(length(z0)) → length(proper(z0))
eq(ok(z0), ok(z1)) → ok(eq(z0, z1))
s(ok(z0)) → ok(s(z0))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
any(z0) → s(z0)
any(proper(z0)) → any(any(any(z0)))
Tuples:
INF(mark(z0)) → c12(INF(z0))
INF(ok(z0)) → c13(INF(z0))
TAKE(mark(z0), z1) → c14(TAKE(z0, z1))
TAKE(z0, mark(z1)) → c15(TAKE(z0, z1))
TAKE(ok(z0), ok(z1)) → c16(TAKE(z0, z1))
LENGTH(mark(z0)) → c17(LENGTH(z0))
LENGTH(ok(z0)) → c18(LENGTH(z0))
EQ(ok(z0), ok(z1)) → c29(EQ(z0, z1))
S(ok(z0)) → c30(S(z0))
CONS(ok(z0), ok(z1)) → c31(CONS(z0, z1))
S tuples:
INF(mark(z0)) → c12(INF(z0))
INF(ok(z0)) → c13(INF(z0))
TAKE(ok(z0), ok(z1)) → c16(TAKE(z0, z1))
LENGTH(mark(z0)) → c17(LENGTH(z0))
EQ(ok(z0), ok(z1)) → c29(EQ(z0, z1))
K tuples:
CONS(ok(z0), ok(z1)) → c31(CONS(z0, z1))
S(ok(z0)) → c30(S(z0))
LENGTH(ok(z0)) → c18(LENGTH(z0))
TAKE(mark(z0), z1) → c14(TAKE(z0, z1))
TAKE(z0, mark(z1)) → c15(TAKE(z0, z1))
Defined Rule Symbols:
active, inf, take, length, proper, eq, s, cons, top, any
Defined Pair Symbols:
INF, TAKE, LENGTH, EQ, S, CONS
Compound Symbols:
c12, c13, c14, c15, c16, c17, c18, c29, c30, c31
(41) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
INF(mark(z0)) → c12(INF(z0))
We considered the (Usable) Rules:none
And the Tuples:
INF(mark(z0)) → c12(INF(z0))
INF(ok(z0)) → c13(INF(z0))
TAKE(mark(z0), z1) → c14(TAKE(z0, z1))
TAKE(z0, mark(z1)) → c15(TAKE(z0, z1))
TAKE(ok(z0), ok(z1)) → c16(TAKE(z0, z1))
LENGTH(mark(z0)) → c17(LENGTH(z0))
LENGTH(ok(z0)) → c18(LENGTH(z0))
EQ(ok(z0), ok(z1)) → c29(EQ(z0, z1))
S(ok(z0)) → c30(S(z0))
CONS(ok(z0), ok(z1)) → c31(CONS(z0, z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(CONS(x1, x2)) = [2]x1
POL(EQ(x1, x2)) = 0
POL(INF(x1)) = x1
POL(LENGTH(x1)) = 0
POL(S(x1)) = [3]x1
POL(TAKE(x1, x2)) = [2]x2
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c14(x1)) = x1
POL(c15(x1)) = x1
POL(c16(x1)) = x1
POL(c17(x1)) = x1
POL(c18(x1)) = x1
POL(c29(x1)) = x1
POL(c30(x1)) = x1
POL(c31(x1)) = x1
POL(mark(x1)) = [3] + x1
POL(ok(x1)) = x1
(42) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(eq(0, 0)) → mark(true)
active(eq(s(z0), s(z1))) → mark(eq(z0, z1))
active(eq(z0, z1)) → mark(false)
active(inf(z0)) → mark(cons(z0, inf(s(z0))))
active(take(0, z0)) → mark(nil)
active(take(s(z0), cons(z1, z2))) → mark(cons(z1, take(z0, z2)))
active(length(nil)) → mark(0)
active(length(cons(z0, z1))) → mark(s(length(z1)))
active(inf(z0)) → inf(active(z0))
active(take(z0, z1)) → take(active(z0), z1)
active(take(z0, z1)) → take(z0, active(z1))
active(length(z0)) → length(active(z0))
inf(mark(z0)) → mark(inf(z0))
inf(ok(z0)) → ok(inf(z0))
take(mark(z0), z1) → mark(take(z0, z1))
take(z0, mark(z1)) → mark(take(z0, z1))
take(ok(z0), ok(z1)) → ok(take(z0, z1))
length(mark(z0)) → mark(length(z0))
length(ok(z0)) → ok(length(z0))
proper(eq(z0, z1)) → eq(proper(z0), proper(z1))
proper(0) → ok(0)
proper(true) → ok(true)
proper(s(z0)) → s(proper(z0))
proper(false) → ok(false)
proper(inf(z0)) → inf(proper(z0))
proper(cons(any(z0), z1)) → cons(any(any(proper(z0))), any(proper(z1)))
proper(take(z0, z1)) → take(proper(z0), proper(z1))
proper(nil) → ok(nil)
proper(length(z0)) → length(proper(z0))
eq(ok(z0), ok(z1)) → ok(eq(z0, z1))
s(ok(z0)) → ok(s(z0))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
any(z0) → s(z0)
any(proper(z0)) → any(any(any(z0)))
Tuples:
INF(mark(z0)) → c12(INF(z0))
INF(ok(z0)) → c13(INF(z0))
TAKE(mark(z0), z1) → c14(TAKE(z0, z1))
TAKE(z0, mark(z1)) → c15(TAKE(z0, z1))
TAKE(ok(z0), ok(z1)) → c16(TAKE(z0, z1))
LENGTH(mark(z0)) → c17(LENGTH(z0))
LENGTH(ok(z0)) → c18(LENGTH(z0))
EQ(ok(z0), ok(z1)) → c29(EQ(z0, z1))
S(ok(z0)) → c30(S(z0))
CONS(ok(z0), ok(z1)) → c31(CONS(z0, z1))
S tuples:
INF(ok(z0)) → c13(INF(z0))
TAKE(ok(z0), ok(z1)) → c16(TAKE(z0, z1))
LENGTH(mark(z0)) → c17(LENGTH(z0))
EQ(ok(z0), ok(z1)) → c29(EQ(z0, z1))
K tuples:
CONS(ok(z0), ok(z1)) → c31(CONS(z0, z1))
S(ok(z0)) → c30(S(z0))
LENGTH(ok(z0)) → c18(LENGTH(z0))
TAKE(mark(z0), z1) → c14(TAKE(z0, z1))
TAKE(z0, mark(z1)) → c15(TAKE(z0, z1))
INF(mark(z0)) → c12(INF(z0))
Defined Rule Symbols:
active, inf, take, length, proper, eq, s, cons, top, any
Defined Pair Symbols:
INF, TAKE, LENGTH, EQ, S, CONS
Compound Symbols:
c12, c13, c14, c15, c16, c17, c18, c29, c30, c31
(43) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
EQ(ok(z0), ok(z1)) → c29(EQ(z0, z1))
We considered the (Usable) Rules:none
And the Tuples:
INF(mark(z0)) → c12(INF(z0))
INF(ok(z0)) → c13(INF(z0))
TAKE(mark(z0), z1) → c14(TAKE(z0, z1))
TAKE(z0, mark(z1)) → c15(TAKE(z0, z1))
TAKE(ok(z0), ok(z1)) → c16(TAKE(z0, z1))
LENGTH(mark(z0)) → c17(LENGTH(z0))
LENGTH(ok(z0)) → c18(LENGTH(z0))
EQ(ok(z0), ok(z1)) → c29(EQ(z0, z1))
S(ok(z0)) → c30(S(z0))
CONS(ok(z0), ok(z1)) → c31(CONS(z0, z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(CONS(x1, x2)) = x22
POL(EQ(x1, x2)) = x1
POL(INF(x1)) = 0
POL(LENGTH(x1)) = 0
POL(S(x1)) = 0
POL(TAKE(x1, x2)) = 0
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c14(x1)) = x1
POL(c15(x1)) = x1
POL(c16(x1)) = x1
POL(c17(x1)) = x1
POL(c18(x1)) = x1
POL(c29(x1)) = x1
POL(c30(x1)) = x1
POL(c31(x1)) = x1
POL(mark(x1)) = 0
POL(ok(x1)) = [1] + x1
(44) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(eq(0, 0)) → mark(true)
active(eq(s(z0), s(z1))) → mark(eq(z0, z1))
active(eq(z0, z1)) → mark(false)
active(inf(z0)) → mark(cons(z0, inf(s(z0))))
active(take(0, z0)) → mark(nil)
active(take(s(z0), cons(z1, z2))) → mark(cons(z1, take(z0, z2)))
active(length(nil)) → mark(0)
active(length(cons(z0, z1))) → mark(s(length(z1)))
active(inf(z0)) → inf(active(z0))
active(take(z0, z1)) → take(active(z0), z1)
active(take(z0, z1)) → take(z0, active(z1))
active(length(z0)) → length(active(z0))
inf(mark(z0)) → mark(inf(z0))
inf(ok(z0)) → ok(inf(z0))
take(mark(z0), z1) → mark(take(z0, z1))
take(z0, mark(z1)) → mark(take(z0, z1))
take(ok(z0), ok(z1)) → ok(take(z0, z1))
length(mark(z0)) → mark(length(z0))
length(ok(z0)) → ok(length(z0))
proper(eq(z0, z1)) → eq(proper(z0), proper(z1))
proper(0) → ok(0)
proper(true) → ok(true)
proper(s(z0)) → s(proper(z0))
proper(false) → ok(false)
proper(inf(z0)) → inf(proper(z0))
proper(cons(any(z0), z1)) → cons(any(any(proper(z0))), any(proper(z1)))
proper(take(z0, z1)) → take(proper(z0), proper(z1))
proper(nil) → ok(nil)
proper(length(z0)) → length(proper(z0))
eq(ok(z0), ok(z1)) → ok(eq(z0, z1))
s(ok(z0)) → ok(s(z0))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
any(z0) → s(z0)
any(proper(z0)) → any(any(any(z0)))
Tuples:
INF(mark(z0)) → c12(INF(z0))
INF(ok(z0)) → c13(INF(z0))
TAKE(mark(z0), z1) → c14(TAKE(z0, z1))
TAKE(z0, mark(z1)) → c15(TAKE(z0, z1))
TAKE(ok(z0), ok(z1)) → c16(TAKE(z0, z1))
LENGTH(mark(z0)) → c17(LENGTH(z0))
LENGTH(ok(z0)) → c18(LENGTH(z0))
EQ(ok(z0), ok(z1)) → c29(EQ(z0, z1))
S(ok(z0)) → c30(S(z0))
CONS(ok(z0), ok(z1)) → c31(CONS(z0, z1))
S tuples:
INF(ok(z0)) → c13(INF(z0))
TAKE(ok(z0), ok(z1)) → c16(TAKE(z0, z1))
LENGTH(mark(z0)) → c17(LENGTH(z0))
K tuples:
CONS(ok(z0), ok(z1)) → c31(CONS(z0, z1))
S(ok(z0)) → c30(S(z0))
LENGTH(ok(z0)) → c18(LENGTH(z0))
TAKE(mark(z0), z1) → c14(TAKE(z0, z1))
TAKE(z0, mark(z1)) → c15(TAKE(z0, z1))
INF(mark(z0)) → c12(INF(z0))
EQ(ok(z0), ok(z1)) → c29(EQ(z0, z1))
Defined Rule Symbols:
active, inf, take, length, proper, eq, s, cons, top, any
Defined Pair Symbols:
INF, TAKE, LENGTH, EQ, S, CONS
Compound Symbols:
c12, c13, c14, c15, c16, c17, c18, c29, c30, c31
(45) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
LENGTH(mark(z0)) → c17(LENGTH(z0))
We considered the (Usable) Rules:none
And the Tuples:
INF(mark(z0)) → c12(INF(z0))
INF(ok(z0)) → c13(INF(z0))
TAKE(mark(z0), z1) → c14(TAKE(z0, z1))
TAKE(z0, mark(z1)) → c15(TAKE(z0, z1))
TAKE(ok(z0), ok(z1)) → c16(TAKE(z0, z1))
LENGTH(mark(z0)) → c17(LENGTH(z0))
LENGTH(ok(z0)) → c18(LENGTH(z0))
EQ(ok(z0), ok(z1)) → c29(EQ(z0, z1))
S(ok(z0)) → c30(S(z0))
CONS(ok(z0), ok(z1)) → c31(CONS(z0, z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(CONS(x1, x2)) = [4]x1 + [2]x2
POL(EQ(x1, x2)) = [4]x1 + [2]x2
POL(INF(x1)) = 0
POL(LENGTH(x1)) = [4]x1
POL(S(x1)) = [2]x1
POL(TAKE(x1, x2)) = x1
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c14(x1)) = x1
POL(c15(x1)) = x1
POL(c16(x1)) = x1
POL(c17(x1)) = x1
POL(c18(x1)) = x1
POL(c29(x1)) = x1
POL(c30(x1)) = x1
POL(c31(x1)) = x1
POL(mark(x1)) = [4] + x1
POL(ok(x1)) = [4] + x1
(46) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(eq(0, 0)) → mark(true)
active(eq(s(z0), s(z1))) → mark(eq(z0, z1))
active(eq(z0, z1)) → mark(false)
active(inf(z0)) → mark(cons(z0, inf(s(z0))))
active(take(0, z0)) → mark(nil)
active(take(s(z0), cons(z1, z2))) → mark(cons(z1, take(z0, z2)))
active(length(nil)) → mark(0)
active(length(cons(z0, z1))) → mark(s(length(z1)))
active(inf(z0)) → inf(active(z0))
active(take(z0, z1)) → take(active(z0), z1)
active(take(z0, z1)) → take(z0, active(z1))
active(length(z0)) → length(active(z0))
inf(mark(z0)) → mark(inf(z0))
inf(ok(z0)) → ok(inf(z0))
take(mark(z0), z1) → mark(take(z0, z1))
take(z0, mark(z1)) → mark(take(z0, z1))
take(ok(z0), ok(z1)) → ok(take(z0, z1))
length(mark(z0)) → mark(length(z0))
length(ok(z0)) → ok(length(z0))
proper(eq(z0, z1)) → eq(proper(z0), proper(z1))
proper(0) → ok(0)
proper(true) → ok(true)
proper(s(z0)) → s(proper(z0))
proper(false) → ok(false)
proper(inf(z0)) → inf(proper(z0))
proper(cons(any(z0), z1)) → cons(any(any(proper(z0))), any(proper(z1)))
proper(take(z0, z1)) → take(proper(z0), proper(z1))
proper(nil) → ok(nil)
proper(length(z0)) → length(proper(z0))
eq(ok(z0), ok(z1)) → ok(eq(z0, z1))
s(ok(z0)) → ok(s(z0))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
any(z0) → s(z0)
any(proper(z0)) → any(any(any(z0)))
Tuples:
INF(mark(z0)) → c12(INF(z0))
INF(ok(z0)) → c13(INF(z0))
TAKE(mark(z0), z1) → c14(TAKE(z0, z1))
TAKE(z0, mark(z1)) → c15(TAKE(z0, z1))
TAKE(ok(z0), ok(z1)) → c16(TAKE(z0, z1))
LENGTH(mark(z0)) → c17(LENGTH(z0))
LENGTH(ok(z0)) → c18(LENGTH(z0))
EQ(ok(z0), ok(z1)) → c29(EQ(z0, z1))
S(ok(z0)) → c30(S(z0))
CONS(ok(z0), ok(z1)) → c31(CONS(z0, z1))
S tuples:
INF(ok(z0)) → c13(INF(z0))
TAKE(ok(z0), ok(z1)) → c16(TAKE(z0, z1))
K tuples:
CONS(ok(z0), ok(z1)) → c31(CONS(z0, z1))
S(ok(z0)) → c30(S(z0))
LENGTH(ok(z0)) → c18(LENGTH(z0))
TAKE(mark(z0), z1) → c14(TAKE(z0, z1))
TAKE(z0, mark(z1)) → c15(TAKE(z0, z1))
INF(mark(z0)) → c12(INF(z0))
EQ(ok(z0), ok(z1)) → c29(EQ(z0, z1))
LENGTH(mark(z0)) → c17(LENGTH(z0))
Defined Rule Symbols:
active, inf, take, length, proper, eq, s, cons, top, any
Defined Pair Symbols:
INF, TAKE, LENGTH, EQ, S, CONS
Compound Symbols:
c12, c13, c14, c15, c16, c17, c18, c29, c30, c31
(47) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
INF(ok(z0)) → c13(INF(z0))
We considered the (Usable) Rules:none
And the Tuples:
INF(mark(z0)) → c12(INF(z0))
INF(ok(z0)) → c13(INF(z0))
TAKE(mark(z0), z1) → c14(TAKE(z0, z1))
TAKE(z0, mark(z1)) → c15(TAKE(z0, z1))
TAKE(ok(z0), ok(z1)) → c16(TAKE(z0, z1))
LENGTH(mark(z0)) → c17(LENGTH(z0))
LENGTH(ok(z0)) → c18(LENGTH(z0))
EQ(ok(z0), ok(z1)) → c29(EQ(z0, z1))
S(ok(z0)) → c30(S(z0))
CONS(ok(z0), ok(z1)) → c31(CONS(z0, z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(CONS(x1, x2)) = [2]x1
POL(EQ(x1, x2)) = [2]x2
POL(INF(x1)) = [2]x1
POL(LENGTH(x1)) = 0
POL(S(x1)) = [2]x12
POL(TAKE(x1, x2)) = 0
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c14(x1)) = x1
POL(c15(x1)) = x1
POL(c16(x1)) = x1
POL(c17(x1)) = x1
POL(c18(x1)) = x1
POL(c29(x1)) = x1
POL(c30(x1)) = x1
POL(c31(x1)) = x1
POL(mark(x1)) = x1
POL(ok(x1)) = [2] + x1
(48) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(eq(0, 0)) → mark(true)
active(eq(s(z0), s(z1))) → mark(eq(z0, z1))
active(eq(z0, z1)) → mark(false)
active(inf(z0)) → mark(cons(z0, inf(s(z0))))
active(take(0, z0)) → mark(nil)
active(take(s(z0), cons(z1, z2))) → mark(cons(z1, take(z0, z2)))
active(length(nil)) → mark(0)
active(length(cons(z0, z1))) → mark(s(length(z1)))
active(inf(z0)) → inf(active(z0))
active(take(z0, z1)) → take(active(z0), z1)
active(take(z0, z1)) → take(z0, active(z1))
active(length(z0)) → length(active(z0))
inf(mark(z0)) → mark(inf(z0))
inf(ok(z0)) → ok(inf(z0))
take(mark(z0), z1) → mark(take(z0, z1))
take(z0, mark(z1)) → mark(take(z0, z1))
take(ok(z0), ok(z1)) → ok(take(z0, z1))
length(mark(z0)) → mark(length(z0))
length(ok(z0)) → ok(length(z0))
proper(eq(z0, z1)) → eq(proper(z0), proper(z1))
proper(0) → ok(0)
proper(true) → ok(true)
proper(s(z0)) → s(proper(z0))
proper(false) → ok(false)
proper(inf(z0)) → inf(proper(z0))
proper(cons(any(z0), z1)) → cons(any(any(proper(z0))), any(proper(z1)))
proper(take(z0, z1)) → take(proper(z0), proper(z1))
proper(nil) → ok(nil)
proper(length(z0)) → length(proper(z0))
eq(ok(z0), ok(z1)) → ok(eq(z0, z1))
s(ok(z0)) → ok(s(z0))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
any(z0) → s(z0)
any(proper(z0)) → any(any(any(z0)))
Tuples:
INF(mark(z0)) → c12(INF(z0))
INF(ok(z0)) → c13(INF(z0))
TAKE(mark(z0), z1) → c14(TAKE(z0, z1))
TAKE(z0, mark(z1)) → c15(TAKE(z0, z1))
TAKE(ok(z0), ok(z1)) → c16(TAKE(z0, z1))
LENGTH(mark(z0)) → c17(LENGTH(z0))
LENGTH(ok(z0)) → c18(LENGTH(z0))
EQ(ok(z0), ok(z1)) → c29(EQ(z0, z1))
S(ok(z0)) → c30(S(z0))
CONS(ok(z0), ok(z1)) → c31(CONS(z0, z1))
S tuples:
TAKE(ok(z0), ok(z1)) → c16(TAKE(z0, z1))
K tuples:
CONS(ok(z0), ok(z1)) → c31(CONS(z0, z1))
S(ok(z0)) → c30(S(z0))
LENGTH(ok(z0)) → c18(LENGTH(z0))
TAKE(mark(z0), z1) → c14(TAKE(z0, z1))
TAKE(z0, mark(z1)) → c15(TAKE(z0, z1))
INF(mark(z0)) → c12(INF(z0))
EQ(ok(z0), ok(z1)) → c29(EQ(z0, z1))
LENGTH(mark(z0)) → c17(LENGTH(z0))
INF(ok(z0)) → c13(INF(z0))
Defined Rule Symbols:
active, inf, take, length, proper, eq, s, cons, top, any
Defined Pair Symbols:
INF, TAKE, LENGTH, EQ, S, CONS
Compound Symbols:
c12, c13, c14, c15, c16, c17, c18, c29, c30, c31
(49) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
TAKE(ok(z0), ok(z1)) → c16(TAKE(z0, z1))
We considered the (Usable) Rules:none
And the Tuples:
INF(mark(z0)) → c12(INF(z0))
INF(ok(z0)) → c13(INF(z0))
TAKE(mark(z0), z1) → c14(TAKE(z0, z1))
TAKE(z0, mark(z1)) → c15(TAKE(z0, z1))
TAKE(ok(z0), ok(z1)) → c16(TAKE(z0, z1))
LENGTH(mark(z0)) → c17(LENGTH(z0))
LENGTH(ok(z0)) → c18(LENGTH(z0))
EQ(ok(z0), ok(z1)) → c29(EQ(z0, z1))
S(ok(z0)) → c30(S(z0))
CONS(ok(z0), ok(z1)) → c31(CONS(z0, z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(CONS(x1, x2)) = [2]x2
POL(EQ(x1, x2)) = [4]x1 + x2
POL(INF(x1)) = [2]x1
POL(LENGTH(x1)) = [3]x1
POL(S(x1)) = [3]x1
POL(TAKE(x1, x2)) = [4]x2
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c14(x1)) = x1
POL(c15(x1)) = x1
POL(c16(x1)) = x1
POL(c17(x1)) = x1
POL(c18(x1)) = x1
POL(c29(x1)) = x1
POL(c30(x1)) = x1
POL(c31(x1)) = x1
POL(mark(x1)) = x1
POL(ok(x1)) = [4] + x1
(50) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(eq(0, 0)) → mark(true)
active(eq(s(z0), s(z1))) → mark(eq(z0, z1))
active(eq(z0, z1)) → mark(false)
active(inf(z0)) → mark(cons(z0, inf(s(z0))))
active(take(0, z0)) → mark(nil)
active(take(s(z0), cons(z1, z2))) → mark(cons(z1, take(z0, z2)))
active(length(nil)) → mark(0)
active(length(cons(z0, z1))) → mark(s(length(z1)))
active(inf(z0)) → inf(active(z0))
active(take(z0, z1)) → take(active(z0), z1)
active(take(z0, z1)) → take(z0, active(z1))
active(length(z0)) → length(active(z0))
inf(mark(z0)) → mark(inf(z0))
inf(ok(z0)) → ok(inf(z0))
take(mark(z0), z1) → mark(take(z0, z1))
take(z0, mark(z1)) → mark(take(z0, z1))
take(ok(z0), ok(z1)) → ok(take(z0, z1))
length(mark(z0)) → mark(length(z0))
length(ok(z0)) → ok(length(z0))
proper(eq(z0, z1)) → eq(proper(z0), proper(z1))
proper(0) → ok(0)
proper(true) → ok(true)
proper(s(z0)) → s(proper(z0))
proper(false) → ok(false)
proper(inf(z0)) → inf(proper(z0))
proper(cons(any(z0), z1)) → cons(any(any(proper(z0))), any(proper(z1)))
proper(take(z0, z1)) → take(proper(z0), proper(z1))
proper(nil) → ok(nil)
proper(length(z0)) → length(proper(z0))
eq(ok(z0), ok(z1)) → ok(eq(z0, z1))
s(ok(z0)) → ok(s(z0))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
any(z0) → s(z0)
any(proper(z0)) → any(any(any(z0)))
Tuples:
INF(mark(z0)) → c12(INF(z0))
INF(ok(z0)) → c13(INF(z0))
TAKE(mark(z0), z1) → c14(TAKE(z0, z1))
TAKE(z0, mark(z1)) → c15(TAKE(z0, z1))
TAKE(ok(z0), ok(z1)) → c16(TAKE(z0, z1))
LENGTH(mark(z0)) → c17(LENGTH(z0))
LENGTH(ok(z0)) → c18(LENGTH(z0))
EQ(ok(z0), ok(z1)) → c29(EQ(z0, z1))
S(ok(z0)) → c30(S(z0))
CONS(ok(z0), ok(z1)) → c31(CONS(z0, z1))
S tuples:none
K tuples:
CONS(ok(z0), ok(z1)) → c31(CONS(z0, z1))
S(ok(z0)) → c30(S(z0))
LENGTH(ok(z0)) → c18(LENGTH(z0))
TAKE(mark(z0), z1) → c14(TAKE(z0, z1))
TAKE(z0, mark(z1)) → c15(TAKE(z0, z1))
INF(mark(z0)) → c12(INF(z0))
EQ(ok(z0), ok(z1)) → c29(EQ(z0, z1))
LENGTH(mark(z0)) → c17(LENGTH(z0))
INF(ok(z0)) → c13(INF(z0))
TAKE(ok(z0), ok(z1)) → c16(TAKE(z0, z1))
Defined Rule Symbols:
active, inf, take, length, proper, eq, s, cons, top, any
Defined Pair Symbols:
INF, TAKE, LENGTH, EQ, S, CONS
Compound Symbols:
c12, c13, c14, c15, c16, c17, c18, c29, c30, c31
(51) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(52) BOUNDS(O(1), O(1))